Goldfarb Tamara, Sberro Hila, Weinstock Eyal, Cohen Ofir, Doron Shany, Charpak-Amikam Yoav, Afik Shaked, Ofir Gal, Sorek Rotem
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
Computational Biology Graduate Group, University of California Berkeley, Berkeley, CA, USA.
EMBO J. 2015 Jan 13;34(2):169-83. doi: 10.15252/embj.201489455. Epub 2014 Dec 1.
The perpetual arms race between bacteria and phage has resulted in the evolution of efficient resistance systems that protect bacteria from phage infection. Such systems, which include the CRISPR-Cas and restriction-modification systems, have proven to be invaluable in the biotechnology and dairy industries. Here, we report on a six-gene cassette in Bacillus cereus which, when integrated into the Bacillus subtilis genome, confers resistance to a broad range of phages, including both virulent and temperate ones. This cassette includes a putative Lon-like protease, an alkaline phosphatase domain protein, a putative RNA-binding protein, a DNA methylase, an ATPase-domain protein, and a protein of unknown function. We denote this novel defense system BREX (Bacteriophage Exclusion) and show that it allows phage adsorption but blocks phage DNA replication. Furthermore, our results suggest that methylation on non-palindromic TAGGAG motifs in the bacterial genome guides self/non-self discrimination and is essential for the defensive function of the BREX system. However, unlike restriction-modification systems, phage DNA does not appear to be cleaved or degraded by BREX, suggesting a novel mechanism of defense. Pan genomic analysis revealed that BREX and BREX-like systems, including the distantly related Pgl system described in Streptomyces coelicolor, are widely distributed in ~10% of all sequenced microbial genomes and can be divided into six coherent subtypes in which the gene composition and order is conserved. Finally, we detected a phage family that evades the BREX defense, implying that anti-BREX mechanisms may have evolved in some phages as part of their arms race with bacteria.
细菌与噬菌体之间持续不断的军备竞赛导致了高效抗性系统的进化,这些系统可保护细菌免受噬菌体感染。事实证明,包括CRISPR-Cas和限制修饰系统在内的此类系统在生物技术和乳制品行业中具有极高的价值。在此,我们报道了蜡样芽孢杆菌中的一个六基因盒,当它整合到枯草芽孢杆菌基因组中时,可赋予对多种噬菌体的抗性,包括烈性噬菌体和温和噬菌体。这个基因盒包括一个假定的Lon样蛋白酶、一个碱性磷酸酶结构域蛋白、一个假定的RNA结合蛋白、一个DNA甲基化酶、一个ATP酶结构域蛋白以及一个功能未知的蛋白。我们将这个新型防御系统命名为BREX(噬菌体排除),并表明它允许噬菌体吸附,但会阻止噬菌体DNA复制。此外,我们的结果表明,细菌基因组中非回文TAGGAG基序上的甲基化引导自我/非自我识别,并且对于BREX系统的防御功能至关重要。然而,与限制修饰系统不同,BREX似乎不会切割或降解噬菌体DNA,这表明了一种新的防御机制。泛基因组分析表明,BREX和BREX样系统,包括在天蓝色链霉菌中描述的远缘相关的Pgl系统,广泛分布于约10%的已测序微生物基因组中,并且可以分为六个连贯的亚型,其中基因组成和顺序是保守的。最后,我们检测到了一个逃避BREX防御的噬菌体家族,这意味着在某些噬菌体与细菌的军备竞赛中,可能已经进化出了抗BREX机制。