Neurocomputing and Neurorobotics Research Group, Universidad Complutense de Madrid Madrid, Spain ; Biomathematics Department, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid Madrid, Spain ; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos Madrid, Spain.
Neurocomputing and Neurorobotics Research Group, Universidad Complutense de Madrid Madrid, Spain ; Biomathematics Department, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid Madrid, Spain ; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos Madrid, Spain ; Department of Industrial Engineering and Management Systems, University of Central Florida Orlando, FL, USA.
Front Cell Neurosci. 2014 Nov 14;8:385. doi: 10.3389/fncel.2014.00385. eCollection 2014.
Peripheral deafferentation downregulates acetylcholine (ACh) synthesis in sensory cortices. However, the responsible neural circuits and processes are not known. We irreversibly transected the rat infraorbital nerve and implanted neuroprosthetic microdevices for proximal stump stimulation, and assessed cytochrome-oxidase and choline- acetyl-transferase (ChAT) in somatosensory, auditory and visual cortices; estimated the number and density of ACh-neurons in the magnocellular basal nucleus (MBN); and localized down-regulated ACh-neurons in basal forebrain using retrograde labeling from deafferented cortices. Here we show that nerve transection, causes down regulation of MBN cholinergic neurons. Stimulation of the cut nerve reverses the metabolic decline but does not affect the decrease in cholinergic fibers in cortex or cholinergic neurons in basal forebrain. Artifical stimulation of the nerve also has no affect of ACh-innervation of other cortices. Cortical ChAT depletion is due to loss of corticopetal MBN ChAT-expressing neurons. MBN ChAT downregulation is not due to a decrease of afferent activity or to a failure of trophic support. Basalocortical ACh circuits are sensory specific, ACh is provided to each sensory cortex "on demand" by dedicated circuits. Our data support the existence of a modality-specific cortex-MBN-cortex circuit for cognitive information processing.
周围神经去传入可下调感觉皮层中的乙酰胆碱(ACh)合成。然而,负责的神经回路和过程尚不清楚。我们不可逆地横断大鼠眶下神经,并植入用于近端残端刺激的神经假体微装置,评估躯体感觉、听觉和视觉皮层中的细胞色素氧化酶和胆碱乙酰转移酶(ChAT);估计大细胞基底核(MBN)中 ACh 神经元的数量和密度;并使用来自去传入皮层的逆行标记来定位基底前脑中下调的 ACh 神经元。在这里,我们表明神经横断导致 MBN 胆碱能神经元的下调。切割神经的刺激可逆转代谢下降,但不会影响皮层中胆碱能纤维或基底前脑胆碱能神经元的减少。神经的人工刺激也不会影响其他皮层的 ACh 支配。皮质 ChAT 耗竭是由于皮质投射的 MBN ChAT 表达神经元的丧失。MBN ChAT 的下调不是由于传入活动减少或营养支持失败所致。基底皮质 ACh 回路是感觉特异性的,ACh 通过专用回路按需提供给每个感觉皮层。我们的数据支持存在一种特定感觉模式的皮层-MBN-皮层回路,用于认知信息处理。