Wang Jian-Chun, Liu Wenming, Tu Qin, Ma Chao, Zhao Lei, Wang Yaolei, Ouyang Jia, Pang Long, Wang Jinyi
Colleges of Science and Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
Analyst. 2015 Feb 7;140(3):827-36. doi: 10.1039/c4an01972e.
Micropatterning technologies are emerging as an enabling tool for various microfluidic-based applications in life sciences. However, the high throughput and multiplex localization of multiple bio-components in a microfluidic device has not yet been well established. In this paper, we describe a simple and in situ micropatterning method using an integrated microfluidic device with pneumatic microstructures (PμSs) for highly controllable immobilization of both proteins and cells in a high throughput, geometry-dynamic, and multi-patterning way. The precise Pluronic F127 passivation of a microchamber surface except the PμS-blocked regions was performed and characterized, and the spatial dynamics and consistency of both the PμSs and protein/cell micropatterning were optically evaluated and quantitatively demonstrated too. Furthermore, a systematic investigation of PμS-assisted micropatterning in microfluidics was carried out. The feature of high throughput and spatial control of micropatterning can be simply realized by using the well-designed PμS arrays. Meanwhile, the co-micropatterning of different proteins (bovine serum albumin and chicken egg albumin) and cells (human umbilical vein endothelial cells and human hepatocellular carcinoma cells) in a microfluidic device was successfully accomplished with the orderly serial manipulation of PμS groups. We demonstrate that PμS-assisted micropatterning can be applied as a convenient microfluidic component for large-scale and diversified protein/cell patterning and manipulation, which could be useful for cell-based tissue organization, high-throughput imaging, protein-related interactions and immunoassays.
微图案化技术正在成为生命科学中各种基于微流控的应用的一种赋能工具。然而,微流控设备中多种生物成分的高通量和多重定位尚未得到很好的确立。在本文中,我们描述了一种简单的原位微图案化方法,该方法使用具有气动微结构(PμSs)的集成微流控设备,以高通量、几何动态和多重图案化的方式对蛋白质和细胞进行高度可控的固定。对微腔表面除PμS阻断区域外进行了精确的普朗尼克F127钝化并进行了表征,还通过光学评估和定量证明了PμSs与蛋白质/细胞微图案化的空间动态和一致性。此外,还对微流控中PμS辅助的微图案化进行了系统研究。通过使用精心设计的PμS阵列,可以简单地实现微图案化的高通量和空间控制特征。同时,通过对PμS组的有序串行操作,成功地在微流控设备中完成了不同蛋白质(牛血清白蛋白和鸡卵白蛋白)和细胞(人脐静脉内皮细胞和人肝癌细胞)的共微图案化。我们证明,PμS辅助的微图案化可以作为一种方便的微流控组件,用于大规模和多样化的蛋白质/细胞图案化和操作,这可能对基于细胞的组织构建、高通量成像、蛋白质相关相互作用和免疫测定有用。