Subedi Bishnu P, Corder Andra L, Zhang Siai, Foss Frank W, Pierce Brad S
Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington , Arlington, Texas 76019, United States.
Biochemistry. 2015 Jan 20;54(2):363-76. doi: 10.1021/bi5012207. Epub 2014 Dec 31.
MiaE [2-methylthio-N(6)-isopentenyl-adenosine(37)-tRNA monooxygenase] isolated from Salmonella typhimurium is a unique non-heme diiron enzyme that catalyzes the O2-dependent post-transcriptional allylic hydroxylation of a hypermodified nucleotide (ms(2)i(6)A37) at position 37 of selected tRNA molecules to produce 2-methylthio-N(6)-(4-hydroxyisopentenyl)-adenosine(37). In this work, isopentenylated tRNA substrates for MiaE were produced from small RNA oligomers corresponding to the anticodon stem loop (ACSL) region of tRNA(Trp) using recombinant MiaA and dimethylallyl pyrophosphate. Steady-state rates for MiaE-catalyzed substrate hydroxylation were determined using recombinant ferredoxin (Fd) and ferredoxin reductase (FdR) to provide a catalytic electron transport chain (ETC) using NADPH as the sole electron source. As with previously reported peroxide-shunt assays, steady-state product formation retains nearly stoichiometric (>98%) E stereoselectivity. MiaE-catalyzed i(6)A-ACSL(Trp) hydroxylation follows Michaelis-Menten saturation kinetics with kcat, KM, and V/K determined to be 0.10 ± 0.01 s(-1), 9.1 ± 1.5 μM, and ∼11000 M(-1) s(-1), respectively. While vastly slower, MiaE-catalyzed hydroxylation of free i(6)A nucleoside could also be observed using the (Fd/FdR)-ETC assay. By comparison to the V/K determined for i(6)A-ACSL substrates, an ∼6000-fold increase in enzymatic efficiency is imparted by ACSL(Trp)-MiaE interactions. The impact of substrate tRNA-MiaE interactions on protein secondary structure and active site electronic configuration was investigated using circular dichroism, dual-mode X-band electron paramagnetic resonance, and Mössbauer spectroscopies. These studies demonstrate that binding of tRNA to MiaE induces a protein conformational change that influences the electronic structure of the diiron site analogous to what has been observed for various bacterial multicomponent diiron monooxygenases upon titration with their corresponding effector proteins. These observations suggest that substrate-enzyme interactions may play a pivotal role in modulating the reactivity of the MiaE diiron active site. Moreover, the simplified monomeric (α) protein configuration exhibited by MiaE provide an unparalleled opportunity to study the impact of protein-effector interactions on non-heme diiron site geometry and reactivity.
从鼠伤寒沙门氏菌中分离出的MiaE [2-甲硫基-N(6)-异戊烯基-腺苷(37)-tRNA单加氧酶] 是一种独特的非血红素双铁酶,它催化特定tRNA分子第37位超修饰核苷酸(ms(2)i(6)A37)的O2依赖性转录后烯丙基羟基化反应,生成2-甲硫基-N(6)-(4-羟基异戊烯基)-腺苷(37)。在这项研究中,使用重组MiaA和二甲基烯丙基焦磷酸,从小RNA寡聚物生成了对应于tRNA(Trp)反密码子茎环(ACSL)区域的异戊烯基化tRNA底物。使用重组铁氧还蛋白(Fd)和铁氧还蛋白还原酶(FdR)测定了MiaE催化底物羟基化的稳态速率,以提供以NADPH作为唯一电子源的催化电子传递链(ETC)。与先前报道的过氧化物分流测定一样,稳态产物形成保留了几乎化学计量的(>98%)E立体选择性。MiaE催化的i(6)A-ACSL(Trp)羟基化反应遵循米氏饱和动力学,确定kcat、KM和V/K分别为0.10 ± 0.01 s(-1)、9.1 ± 1.5 μM和约11000 M(-1) s(-1)。虽然速度慢得多,但使用(Fd/FdR)-ETC测定也可以观察到MiaE催化的游离i(6)A核苷的羟基化反应。与为i(6)A-ACSL底物测定的V/K相比,ACSL(Trp)-MiaE相互作用使酶促效率提高了约6000倍。使用圆二色性、双模X波段电子顺磁共振和穆斯堡尔光谱研究了底物tRNA-MiaE相互作用对蛋白质二级结构和活性位点电子构型的影响。这些研究表明,tRNA与MiaE的结合诱导了蛋白质构象变化,这影响了双铁位点的电子结构,类似于各种细菌多组分双铁单加氧酶在用其相应效应蛋白滴定后所观察到的情况。这些观察结果表明,底物-酶相互作用可能在调节MiaE双铁活性位点的反应性中起关键作用。此外,MiaE展示的简化单体(α)蛋白质构型为研究蛋白质-效应物相互作用对非血红素双铁位点几何形状和反应性的影响提供了无与伦比的机会。