Suppr超能文献

处于自然环境中的侵袭性伪足。

Invadosomes in their natural habitat.

作者信息

Génot Elisabeth, Gligorijevic Bojana

机构信息

Université de Bordeaux, F-33000 Bordeaux, France; INSERM U1045, F-33000 Bordeaux, France; European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33 600 Pessac, France.

Department of Systems & Computational Biology and Albert Einstein College of Medicine, Price Center, 1301 Morris Park Avenue, 10461 Bronx, NY, USA.

出版信息

Eur J Cell Biol. 2014 Oct;93(10-12):367-79. doi: 10.1016/j.ejcb.2014.10.002. Epub 2014 Oct 23.

Abstract

Podosomes and invadopodia (collectively known as invadosomes) are small, F-actin-rich protrusions that are located at points of cell-ECM contacts and endow cells with invasive capabilities. So far, they have been identified in human or murine immune (myelomonocytic), vascular and cancer cells. The overarching reason for studying invadosomes is their connection to human disease. For example, macrophages and osteoclasts lacking Wiskott-Aldrich syndrome protein (WASp) are not able to form podosomes, and this leads to altered macrophage chemotaxis and defective bone resorption by osteoclasts. In contrast, the ability of cancer cells to form invadopodia is associated with high invasive and metastatic potentials. While invadosome composition, dynamics and signaling cascades leading to their assembly can be followed easily in in vitro assays, studying their contribution to pathophysiological processes in situ remains challenging. A number of recent papers have started to address this issue and describe invadosomes in situ in mouse models of cancer, cardiovascular disease and angiogenesis. In addition, in vivo invadosome homologs have been reported in developmental model systems such as C. elegans, zebrafish and sea squirt. Comparative analyses among different invasion mechanisms as they happen in their natural habitats, i.e., in situ, may provide an outline of the invadosome evolutionary history, and guide our understanding of the roles of the invasion process in pathophysiology versus development.

摘要

足体和侵袭性伪足(统称为侵袭体)是富含丝状肌动蛋白的小突起,位于细胞与细胞外基质接触点,赋予细胞侵袭能力。到目前为止,它们已在人类或小鼠的免疫(骨髓单核细胞)、血管和癌细胞中被鉴定出来。研究侵袭体的首要原因是它们与人类疾病的关联。例如,缺乏威斯科特-奥尔德里奇综合征蛋白(WASp)的巨噬细胞和破骨细胞无法形成足体,这会导致巨噬细胞趋化性改变以及破骨细胞骨吸收缺陷。相反,癌细胞形成侵袭性伪足的能力与高侵袭和转移潜能相关。虽然在体外实验中可以轻松追踪侵袭体的组成、动态变化以及导致其组装的信号级联反应,但研究它们在病理生理过程中的原位作用仍然具有挑战性。最近的一些论文已开始探讨这个问题,并在癌症、心血管疾病和血管生成的小鼠模型中描述了原位侵袭体。此外,在秀丽隐杆线虫、斑马鱼和海鞘等发育模型系统中也报道了体内侵袭体同源物。对不同侵袭机制在其自然生境(即原位)中的比较分析,可能会勾勒出侵袭体的进化历史,并指导我们理解侵袭过程在病理生理学与发育中的作用。

相似文献

1
Invadosomes in their natural habitat.
Eur J Cell Biol. 2014 Oct;93(10-12):367-79. doi: 10.1016/j.ejcb.2014.10.002. Epub 2014 Oct 23.
2
Invadosomes are coming: new insights into function and disease relevance.
FEBS J. 2018 Jan;285(1):8-27. doi: 10.1111/febs.14123. Epub 2017 Jun 22.
3
Podosomes as novel players in endothelial biology.
Eur J Cell Biol. 2014 Oct;93(10-12):405-12. doi: 10.1016/j.ejcb.2014.07.009. Epub 2014 Aug 7.
4
Regulation of ECM degradation and axon guidance by growth cone invadosomes.
Development. 2015 Feb 1;142(3):486-96. doi: 10.1242/dev.108266. Epub 2015 Jan 6.
5
Invadosomes: intriguing structures with promise.
Eur J Cell Biol. 2011 Feb-Mar;90(2-3):100-7. doi: 10.1016/j.ejcb.2010.05.011.
6
Degrading devices: invadosomes in proteolytic cell invasion.
Annu Rev Cell Dev Biol. 2011;27:185-211. doi: 10.1146/annurev-cellbio-092910-154216. Epub 2011 Jul 21.
8
Coupling between acto-adhesive machinery and ECM degradation in invadosomes.
Cell Adh Migr. 2014;8(3):256-62. doi: 10.4161/cam.28558.
9
Significance of kinase activity in the dynamic invadosome.
Eur J Cell Biol. 2016 Nov;95(11):483-492. doi: 10.1016/j.ejcb.2016.07.002. Epub 2016 Jul 19.
10
The microenvironment controls invadosome plasticity.
J Cell Sci. 2016 May 1;129(9):1759-68. doi: 10.1242/jcs.182329. Epub 2016 Mar 30.

引用本文的文献

1
E-Cadherin Is a Structuring Component of Invadopodia in Pancreatic Cancer.
J Cell Mol Med. 2025 May;29(9):e70608. doi: 10.1111/jcmm.70608.
2
Tubulin Complexity in Cancer and Metastasis.
Adv Exp Med Biol. 2024;1452:21-35. doi: 10.1007/978-3-031-58311-7_2.
4
Proteomic Markers for Mechanobiological Properties of Metastatic Cancer Cells.
Int J Mol Sci. 2023 Mar 1;24(5):4773. doi: 10.3390/ijms24054773.
5
Nematode-Applied Technology for Human Tumor Microenvironment Research and Development.
Curr Issues Mol Biol. 2022 Feb 21;44(2):988-997. doi: 10.3390/cimb44020065.
6
Megakaryocytes form linear podosomes devoid of digestive properties to remodel medullar matrix.
Sci Rep. 2022 Apr 15;12(1):6255. doi: 10.1038/s41598-022-10215-x.

本文引用的文献

1
Digging a little deeper: the stages of invadopodium formation and maturation.
Eur J Cell Biol. 2014 Oct;93(10-12):438-44. doi: 10.1016/j.ejcb.2014.07.003. Epub 2014 Jul 21.
4
The vascular endothelium and human diseases.
Int J Biol Sci. 2013 Nov 9;9(10):1057-69. doi: 10.7150/ijbs.7502. eCollection 2013.
5
External mechanical cues trigger the establishment of the anterior-posterior axis in early mouse embryos.
Dev Cell. 2013 Oct 28;27(2):131-144. doi: 10.1016/j.devcel.2013.09.026.
6
Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth.
Prog Biophys Mol Biol. 2013 Nov;113(2):333-54. doi: 10.1016/j.pbiomolbio.2013.10.001. Epub 2013 Oct 15.
7
Evaluating human cancer cell metastasis in zebrafish.
BMC Cancer. 2013 Oct 4;13:453. doi: 10.1186/1471-2407-13-453.
8
Zebrafish cancer and metastasis models for in vivo drug discovery.
Drug Discov Today Technol. 2013 Spring;10(1):e83-9. doi: 10.1016/j.ddtec.2012.04.006.
9
Signaling inputs to invadopodia and podosomes.
J Cell Sci. 2013 Jul 15;126(Pt 14):2979-89. doi: 10.1242/jcs.079475. Epub 2013 Jul 10.
10
The netrin receptor DCC focuses invadopodia-driven basement membrane transmigration in vivo.
J Cell Biol. 2013 Jun 10;201(6):903-13. doi: 10.1083/jcb.201301091.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验