Suppr超能文献

信号输入到侵袭伪足和足突。

Signaling inputs to invadopodia and podosomes.

机构信息

Department of Cancer Biology, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN 37232-6840, USA.

出版信息

J Cell Sci. 2013 Jul 15;126(Pt 14):2979-89. doi: 10.1242/jcs.079475. Epub 2013 Jul 10.

Abstract

Remodeling of extracellular matrix (ECM) is a fundamental cell property that allows cells to alter their microenvironment and move through tissues. Invadopodia and podosomes are subcellular actin-rich structures that are specialized for matrix degradation and are formed by cancer and normal cells, respectively. Although initial studies focused on defining the core machinery of these two structures, recent studies have identified inputs from both growth factor and adhesion signaling as crucial for invasive activity. This Commentary will outline the current knowledge on the upstream signaling inputs to invadopodia and podosomes and their role in governing distinct stages of these invasive structures. We discuss invadopodia and podosomes as adhesion structures and highlight new data showing that invadopodia-associated adhesion rings promote the maturation of already-formed invadopodia. We present a model in which growth factor stimulation leads to phosphoinositide 3-kinase (PI3K) activity and formation of invadopodia, whereas adhesion signaling promotes exocytosis of proteinases at invadopodia.

摘要

细胞外基质 (ECM) 的重塑是细胞的基本特性之一,使细胞能够改变其微环境并在组织中移动。侵袭伪足和足突是细胞内富含肌动蛋白的亚细胞结构,分别专门用于基质降解,并由癌细胞和正常细胞形成。尽管最初的研究集中于定义这两种结构的核心机制,但最近的研究表明,生长因子和黏附信号的输入对于侵袭活性至关重要。本评论将概述侵袭伪足和足突的上游信号输入及其在调节这些侵袭结构不同阶段中的作用的最新知识。我们将侵袭伪足和足突视为黏附结构,并强调新的数据表明,与侵袭伪足相关的黏附环促进已经形成的侵袭伪足的成熟。我们提出了一个模型,其中生长因子刺激导致磷酸肌醇 3-激酶 (PI3K) 活性和侵袭伪足的形成,而黏附信号促进蛋白酶在侵袭伪足处的胞吐作用。

相似文献

1
Signaling inputs to invadopodia and podosomes.
J Cell Sci. 2013 Jul 15;126(Pt 14):2979-89. doi: 10.1242/jcs.079475. Epub 2013 Jul 10.
2
Podosome-like structures of non-invasive carcinoma cells are replaced in epithelial-mesenchymal transition by actin comet-embedded invadopodia.
J Cell Mol Med. 2010 Jun;14(6B):1569-93. doi: 10.1111/j.1582-4934.2009.00868.x. Epub 2009 Jul 28.
4
5'-Inositol phosphatase SHIP2 recruits Mena to stabilize invadopodia for cancer cell invasion.
J Cell Biol. 2016 Sep 12;214(6):719-34. doi: 10.1083/jcb.201501003. Epub 2016 Sep 5.
5
The matrix corroded: podosomes and invadopodia in extracellular matrix degradation.
Trends Cell Biol. 2007 Mar;17(3):107-17. doi: 10.1016/j.tcb.2007.01.002. Epub 2007 Feb 1.
6
Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces.
Cell Rep. 2013 Dec 12;5(5):1456-68. doi: 10.1016/j.celrep.2013.10.040. Epub 2013 Nov 27.
7
Cross-Talk between Receptor Tyrosine Kinases AXL and ERBB3 Regulates Invadopodia Formation in Melanoma Cells.
Cancer Res. 2019 May 15;79(10):2634-2648. doi: 10.1158/0008-5472.CAN-18-2316. Epub 2019 Mar 26.
8
Quantification of Invadopodia Formation and Matrix Degradation Activity.
Methods Mol Biol. 2023;2600:185-196. doi: 10.1007/978-1-0716-2851-5_12.
10
Regulation of invadopodia by mechanical signaling.
Exp Cell Res. 2016 Apr 10;343(1):89-95. doi: 10.1016/j.yexcr.2015.10.038. Epub 2015 Nov 4.

引用本文的文献

1
The regulation of cancer-associated thrombosis by podoplanin.
Thromb Update. 2024 Jun;15. doi: 10.1016/j.tru.2024.100174. Epub 2024 Apr 17.
2
The oncolytic avian reovirus p17 protein suppresses invadopodia formation via disruption of TKs5 complexes and oncogenic signaling pathways.
Front Cell Infect Microbiol. 2025 Jun 12;15:1603124. doi: 10.3389/fcimb.2025.1603124. eCollection 2025.
3
Invadopodia in cancer metastasis: dynamics, regulation, and targeted therapies.
J Transl Med. 2025 May 16;23(1):548. doi: 10.1186/s12967-025-06526-y.
4
High wall shear stress-dependent podosome formation in a novel murine model of intracranial aneurysm.
Front Stroke. 2024;3. doi: 10.3389/fstro.2024.1494559. Epub 2024 Nov 25.
5
Mechanisms and therapeutic potential of disulphidptosis in cancer.
Cell Prolif. 2025 Jan;58(1):e13752. doi: 10.1111/cpr.13752. Epub 2024 Oct 1.
6
A MAP1B-cortactin-Tks5 axis regulates TNBC invasion and tumorigenesis.
J Cell Biol. 2024 Mar 4;223(3). doi: 10.1083/jcb.202303102. Epub 2024 Feb 14.
8
Disturbing cytoskeleton by engineered nanomaterials for enhanced cancer therapeutics.
Bioact Mater. 2023 Jun 29;29:50-71. doi: 10.1016/j.bioactmat.2023.06.016. eCollection 2023 Nov.
9
Antioxidative Impact of Phenolics-Loaded Nanocarriers on Cytoskeletal Network Remodeling of Invasive Cancer Cells.
ACS Appl Mater Interfaces. 2023 Jul 26;15(29):34462-34474. doi: 10.1021/acsami.3c04693. Epub 2023 Jul 12.

本文引用的文献

1
Notch increases the shedding of HB-EGF by ADAM12 to potentiate invadopodia formation in hypoxia.
J Cell Biol. 2013 Apr 15;201(2):279-92. doi: 10.1083/jcb.201209151.
2
Loss of Scar/WAVE complex promotes N-WASP- and FAK-dependent invasion.
Curr Biol. 2013 Jan 21;23(2):107-17. doi: 10.1016/j.cub.2012.11.059. Epub 2012 Dec 27.
3
Adhesion rings surround invadopodia and promote maturation.
Biol Open. 2012 Aug 15;1(8):711-22. doi: 10.1242/bio.20121867. Epub 2012 Jun 12.
5
Derivation and maturation of synthetic and contractile vascular smooth muscle cells from human pluripotent stem cells.
Cardiovasc Res. 2013 Feb 1;97(2):321-30. doi: 10.1093/cvr/cvs315. Epub 2012 Oct 11.
7
Hepatoma-derived growth factor stimulates podosome rosettes formation in NIH/3T3 cells through the activation of phosphatidylinositol 3-kinase/Akt pathway.
Biochem Biophys Res Commun. 2012 Aug 24;425(2):169-76. doi: 10.1016/j.bbrc.2012.07.060. Epub 2012 Jul 20.
9
MEK/ERK pathway mediates PKC activation-induced recruitment of PKCζ and MMP-9 to podosomes.
J Cell Physiol. 2013 Feb;228(2):416-27. doi: 10.1002/jcp.24146.
10
Proteomic analysis of podosome fractions from macrophages reveals similarities to spreading initiation centres.
Eur J Cell Biol. 2012 Nov-Dec;91(11-12):908-22. doi: 10.1016/j.ejcb.2012.05.005. Epub 2012 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验