Vacanti Nathaniel M, Divakaruni Ajit S, Green Courtney R, Parker Seth J, Henry Robert R, Ciaraldi Theodore P, Murphy Anne N, Metallo Christian M
Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
Mol Cell. 2014 Nov 6;56(3):425-435. doi: 10.1016/j.molcel.2014.09.024. Epub 2014 Oct 30.
Pyruvate lies at a central biochemical node connecting carbohydrate, amino acid, and fatty acid metabolism, and the regulation of pyruvate flux into mitochondria represents a critical step in intermediary metabolism impacting numerous diseases. To characterize changes in mitochondrial substrate utilization in the context of compromised mitochondrial pyruvate transport, we applied (13)C metabolic flux analysis (MFA) to cells after transcriptional or pharmacological inhibition of the mitochondrial pyruvate carrier (MPC). Despite profound suppression of both glucose and pyruvate oxidation, cell growth, oxygen consumption, and tricarboxylic acid (TCA) metabolism were surprisingly maintained. Oxidative TCA flux was achieved through enhanced reliance on glutaminolysis through malic enzyme and pyruvate dehydrogenase (PDH) as well as fatty acid and branched-chain amino acid oxidation. Thus, in contrast to inhibition of complex I or PDH, suppression of pyruvate transport induces a form of metabolic flexibility associated with the use of lipids and amino acids as catabolic and anabolic fuels.
丙酮酸处于连接碳水化合物、氨基酸和脂肪酸代谢的核心生化节点,丙酮酸流入线粒体的调节是中间代谢中的关键步骤,影响着众多疾病。为了在受损的线粒体丙酮酸转运背景下表征线粒体底物利用的变化,我们在转录或药理学抑制线粒体丙酮酸载体(MPC)后,对细胞应用了(13)C代谢通量分析(MFA)。尽管葡萄糖和丙酮酸氧化均受到深度抑制,但细胞生长、耗氧量和三羧酸(TCA)代谢却出人意料地得以维持。通过增强对苹果酸酶和丙酮酸脱氢酶(PDH)介导的谷氨酰胺分解以及脂肪酸和支链氨基酸氧化的依赖,实现了氧化型TCA通量。因此,与抑制复合体I或PDH不同,丙酮酸转运的抑制诱导了一种代谢灵活性形式,这种形式与使用脂质和氨基酸作为分解代谢和合成代谢燃料相关。