Mekkittikul Marisa, Zhu Cansheng, Danna Bezawit T, Zuo Xiaohong, Rios Amy, Yang Krista, Villanueva Miranda, Agarwal Devanshi, Castro Daniel, Gu Xuelin, Strofs Alexander R, Shirihai Orian S, Stiles Linsey, Frautschy Sally A, Oscarsson Jan, Esterline Russell L, Cole Gregory M, Divakaruni Ajit S
Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.
Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
bioRxiv. 2025 May 3:2025.04.30.651373. doi: 10.1101/2025.04.30.651373.
Metabolic dysfunction is linked to several forms of age-related neurodegeneration including Alzheimer's Disease (AD), and targeting brain energy metabolism is an increasingly attractive mode of therapeutic intervention. However, commonly used methods to identify specific metabolic pathways of interest in preclinical models of neurodegenerative disease have considerable limitations. They are prone to subselection of sample material, unable to identify cell type-specific effects, or cannot identify metabolic defects upstream of mitochondria. Here we address these challenges by validating a method for stable isotope tracing with isolated synaptic nerve terminals, or 'synaptosomes'. We further applied this approach to study glucose metabolism in synaptosomes isolated from the 5X-FAD mouse model of AD treated with the antidiabetic sodium-glucose linked transporter-2 (SGLT-2) inhibitor Dapagliflozin. Treatment with Dapagliflozin preserved steady-state levels of synaptosomal metabolites and enrichment from labeled glucose into citrate that was reduced in the 5X-FAD model. These changes correlated with trends towards improved spatial working memory but not amyloid burden. The results highlight the utility of stable isotope tracing in synaptosomes to identify precise sites of metabolic dysfunction and mechanisms of action for metabolic drug candidates in preclinical models of neurodegeneration.
代谢功能障碍与包括阿尔茨海默病(AD)在内的多种与年龄相关的神经退行性疾病相关联,针对脑能量代谢进行治疗干预正成为一种越来越有吸引力的方式。然而,在神经退行性疾病临床前模型中识别特定感兴趣代谢途径的常用方法存在相当大的局限性。它们容易出现样本材料的选择偏差,无法识别细胞类型特异性效应,或者无法识别线粒体上游的代谢缺陷。在此,我们通过验证一种利用分离的突触神经末梢或“突触体”进行稳定同位素示踪的方法来应对这些挑战。我们进一步应用该方法研究了从用抗糖尿病药物钠-葡萄糖协同转运蛋白-2(SGLT-2)抑制剂达格列净治疗的5X-FAD AD小鼠模型中分离出的突触体中的葡萄糖代谢。达格列净治疗可维持突触体代谢物的稳态水平,并使从标记葡萄糖到柠檬酸的富集增加,而在5X-FAD模型中该富集减少。这些变化与空间工作记忆改善的趋势相关,但与淀粉样蛋白负荷无关。结果突出了突触体中稳定同位素示踪在识别神经退行性疾病临床前模型中代谢功能障碍的精确位点和代谢药物候选物作用机制方面的实用性。