Nanoscience Research Laboratory, School of Nano Science and Technology, National Institute of Technology Calicut, Calicut, Kerala, India.
Nanoscience Research Laboratory, School of Nano Science and Technology, National Institute of Technology Calicut, Calicut, Kerala, India.
Biosens Bioelectron. 2015 Mar 15;65:333-40. doi: 10.1016/j.bios.2014.10.054. Epub 2014 Oct 30.
In this work, we report a simple strategy for signal amplification using appropriately functionalized gold nanoparticles in an electrochemical genosensor which led to attomolar detection of breast cancer 1 (BRCA1) gene. The sensor was developed by the layer-by-layer assembly of mercaptopropionic acid (MPA), polyethylene glycol (PEG) functionalized gold nanoparticle (AuNPPEG), capture DNA (DNA-c), target BRCA1 DNA (DNA-t) and gold nanoparticle labeled reporter DNA (DNA-r.AuNP) on gold electrode. PEG functionalized gold nanoparticles on the MPA surface provided good electron conducting path nullifying the insulating effect of MPA and also act as a proper immobilization platform for the DNA-c by the large number of carboxyl groups present on the functionalized gold nanoparticles. We demonstrated that the incorporation of MPA functionalized gold nanoparticles (AuNPMPA) as an electrochemical label in this sensor design could significantly enhance the sensitivity in the detection. The DNA hybridization of DNA-r.AuNP with target probe was measured by chronoamperometry, electrochemical impedance spectroscopy (EIS), and scanning tunnelling spectroscopy (STS). Electrochemical quartz crystal microbalance (EQCM) experiments were used to support the detection and also to calculate the number of adsorbed molecules on the surface. Under optimum conditions the present sensor exhibited high sensitivity and a very low detection limit of 50attomolar DNA target (294.8attogram BRCA1gene/ml). It shows excellent selectivity against non complementary sequences and 3 base mismatch complementary targets. It also shows good reproducibility, stability and reusability and the developed sensor surface is suitable for point-of care applications.
在这项工作中,我们报告了一种使用适当功能化的金纳米粒子在电化学生物传感器中进行信号放大的简单策略,该策略可实现对乳腺癌 1 基因(BRCA1)的纳摩尔检测。该传感器是通过在金电极上逐层组装巯基丙酸(MPA)、聚乙二醇(PEG)功能化的金纳米粒子(AuNPPEG)、捕获 DNA(DNA-c)、靶标 BRCA1 DNA(DNA-t)和金纳米粒子标记的报告 DNA(DNA-r.AuNP)来开发的。MPA 表面上的 PEG 功能化金纳米粒子提供了良好的电子传导路径,消除了 MPA 的绝缘效应,并且由于功能化金纳米粒子上存在大量羧基,因此也可以作为 DNA-c 的适当固定化平台。我们证明,在这种传感器设计中,将 MPA 功能化金纳米粒子(AuNPMPA)作为电化学标记物的掺入可以显着提高检测的灵敏度。通过计时安培法、电化学阻抗谱(EIS)和扫描隧道谱(STS)测量 DNA-r.AuNP 与靶标探针的 DNA 杂交。电化学石英晶体微天平(EQCM)实验用于支持检测,并计算表面上吸附的分子数量。在最佳条件下,本传感器表现出高灵敏度和非常低的检测限为 50 个皮摩尔 DNA 靶标(294.8 皮克 BRCA1 基因/ml)。它对非互补序列和 3 碱基错配互补靶标表现出优异的选择性。它还表现出良好的重现性、稳定性和可重复性,并且开发的传感器表面适用于即时护理应用。