Qamar Saeed Muhammad, Dufour Noelle, Bartholmae Cynthia, Sieranska Urzula, Knopf Malaika, Thierry Eloïse, Thierry Sylvain, Delelis Olivier, Grandchamp Nicolas, Pilet Héloïse, Ravassard Philippe, Massonneau Julie, Pflumio Françoise, von Kalle Christof, Lachapelle François, Bemelmans Alexis-Pierre, Schmidt Manfred, Serguera Ché
1] CEA, DSV, IBM, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France [2] INSERM, UMS27, Fontenay-aux-Roses, France [3] Institute of Pure and Applied Biology, Microbiology Division, Bahauddin Zakariya University Multan, Pakistan.
1] CEA, DSV, IBM, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France [2] Laboratoire des maladies neurodégénératives CNRS, CEA URA 2210.
Mol Ther Nucleic Acids. 2014 Dec 2;3(12):e213. doi: 10.1038/mtna.2014.65.
HIV-1 derived vectors are among the most efficient for gene transduction in mammalian tissues. As the parent virus, they carry out vector genome insertion into the host cell chromatin. Consequently, their preferential integration in transcribed genes raises several conceptual and safety issues. To address part of these questions, HIV-derived vectors have been engineered to be nonintegrating. This was mainly achieved by mutating HIV-1 integrase at functional hotspots of the enzyme enabling the development of streamlined nuclear DNA circles functional for transgene expression. Few integrase mutant vectors have been successfully tested so far for gene transfer. They are cleared with time in mitotic cells, but stable within nondividing retina cells or neurons. Here, we compared six HIV vectors carrying different integrases, either wild type or with different mutations (D64V, D167H, Q168A, K186Q+Q214L+Q216L, and RRK262-264AAH) shown to modify integrase enzymatic activity, oligomerization, or interaction with key cellular cofactor of HIV DNA integration as LEDGF/p75 or TNPO3. We show that these mutations differently affect the transduction efficiency as well as rates and patterns of integration of HIV-derived vectors suggesting their different processing in the nucleus. Surprisingly and most interestingly, we report that an integrase carrying the D167H substitution improves vector transduction efficiency and integration in both HEK-293T and primary CD34+ cells.
HIV-1衍生载体是哺乳动物组织中基因转导效率最高的载体之一。作为亲本病毒,它们将载体基因组插入宿主细胞染色质中。因此,它们在转录基因中的优先整合引发了一些概念和安全问题。为了解决部分这些问题,已对HIV衍生载体进行改造使其不具有整合能力。这主要是通过在该酶的功能热点处对HIV-1整合酶进行突变来实现的,从而开发出对转基因表达有效的简化核DNA环。到目前为止,很少有整合酶突变载体成功进行基因转移测试。它们在有丝分裂细胞中会随时间清除,但在不分裂的视网膜细胞或神经元中保持稳定。在这里,我们比较了六种携带不同整合酶的HIV载体,这些整合酶要么是野生型,要么带有不同突变(D64V、D167H、Q168A、K186Q+Q214L+Q216L和RRK262-264AAH),这些突变已显示会改变整合酶的酶活性、寡聚化或与HIV DNA整合的关键细胞辅因子如LEDGF/p75或TNPO3的相互作用。我们表明,这些突变对HIV衍生载体的转导效率以及整合速率和模式有不同影响,表明它们在细胞核中的处理方式不同。令人惊讶且最有趣的是,我们报告携带D167H替代的整合酶可提高HEK-293T细胞和原代CD34+细胞中的载体转导效率和整合。