Coakley K J, Imtiaz A, Wallis T M, Weber J C, Berweger S, Kabos P
National Institute of Standards and Technology, Boulder, CO 80305, USA.
National Institute of Standards and Technology, Boulder, CO 80305, USA; University of Colorado at Boulder, Boulder, CO 80309, USA.
Ultramicroscopy. 2015 Mar;150:1-9. doi: 10.1016/j.ultramic.2014.11.014. Epub 2014 Nov 23.
Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical.
近场扫描微波显微镜在促进材料表征、开发和建模方面具有巨大潜力。通过在多个频率和幅度下获取微波图像(以及其他模态),可以在不同的横向和深度尺度上研究材料和器件物理。图像通常存在噪声,并受到伪影的污染,这些伪影可能因扫描线而异,并且由于样品倾斜误差会出现类似平面的趋势。在此,我们基于通过局部回归方法的稳健实现确定的二维平滑趋势估计对图像进行平整。在这种稳健方法中,并非由趋势引起的特征和异常值会自动被降低权重。我们使用自适应权重平滑方法对图像进行去噪。该方法在保留图像中类似边缘特征的同时消除加性噪声。我们在形貌图像和微波|S11|图像上证明了我们方法的可行性。对于一个具有挑战性的测试案例,我们证明我们的方法优于扫描探针显微镜数据分析软件包Gwyddion中的替代方法。我们的方法对于用户手动选择地标或图像子集不切实际的大量图像数据集应该是有用的。