Suppr超能文献

牙科微型计算机断层扫描(micro-CT)图像去噪新方法与现有方法的比较研究

A comparative study of new and current methods for dental micro-CT image denoising.

作者信息

Shahmoradi Mahdi, Lashgari Mojtaba, Rabbani Hossein, Qin Jie, Swain Michael

机构信息

1 Biomaterials and Bioengineering, Faculty of Dentistry, University of Sydney, Sydney, Australia.

2 Department of Biomedical Engineering, Faculty of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran.

出版信息

Dentomaxillofac Radiol. 2016;45(3):20150302. doi: 10.1259/dmfr.20150302. Epub 2016 Jan 14.

Abstract

OBJECTIVES

The aim of the current study was to evaluate the application of two advanced noise-reduction algorithms for dental micro-CT images and to implement a comparative analysis of the performance of new and current denoising algorithms.

METHODS

Denoising was performed using gaussian and median filters as the current filtering approaches and the block-matching and three-dimensional (BM3D) method and total variation method as the proposed new filtering techniques. The performance of the denoising methods was evaluated quantitatively using contrast-to-noise ratio (CNR), edge preserving index (EPI) and blurring indexes, as well as qualitatively using the double-stimulus continuous quality scale procedure.

RESULTS

The BM3D method had the best performance with regard to preservation of fine textural features (CNREdge), non-blurring of the whole image (blurring index), the clinical visual score in images with very fine features and the overall visual score for all types of images. On the other hand, the total variation method provided the best results with regard to smoothing of images in texture-free areas (CNRTex-free) and in preserving the edges and borders of image features (EPI).

CONCLUSIONS

The BM3D method is the most reliable technique for denoising dental micro-CT images with very fine textural details, such as shallow enamel lesions, in which the preservation of the texture and fine features is of the greatest importance. On the other hand, the total variation method is the technique of choice for denoising images without very fine textural details in which the clinician or researcher is interested mainly in anatomical features and structural measurements.

摘要

目的

本研究旨在评估两种先进的降噪算法在牙科显微CT图像中的应用,并对新的和现有的去噪算法的性能进行比较分析。

方法

使用高斯滤波器和中值滤波器作为当前的滤波方法进行去噪,同时使用块匹配三维(BM3D)方法和全变差方法作为新提出的滤波技术。使用对比度噪声比(CNR)、边缘保留指数(EPI)和模糊指数对去噪方法的性能进行定量评估,并使用双刺激连续质量量表程序进行定性评估。

结果

在保留精细纹理特征(CNREdge)、整个图像不模糊(模糊指数)、具有非常精细特征的图像的临床视觉评分以及所有类型图像的总体视觉评分方面,BM3D方法表现最佳。另一方面,全变差方法在无纹理区域的图像平滑(CNRTex-free)以及保留图像特征的边缘和边界(EPI)方面提供了最佳结果。

结论

BM3D方法是对具有非常精细纹理细节(如浅釉质病变)的牙科显微CT图像进行去噪的最可靠技术,在这类图像中,纹理和精细特征的保留最为重要。另一方面,全变差方法是对没有非常精细纹理细节的图像进行去噪的首选技术,在这类图像中,临床医生或研究人员主要关注解剖特征和结构测量。

相似文献

1
A comparative study of new and current methods for dental micro-CT image denoising.
Dentomaxillofac Radiol. 2016;45(3):20150302. doi: 10.1259/dmfr.20150302. Epub 2016 Jan 14.
2
Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics.
Med Phys. 2019 Jan;46(1):190-198. doi: 10.1002/mp.13252. Epub 2018 Nov 19.
3
Micro-CT based quantitative evaluation of caries excavation.
Dent Mater. 2010 Jun;26(6):579-88. doi: 10.1016/j.dental.2010.01.012. Epub 2010 Mar 29.
4
Dose reduction and image enhancement in micro-CT using deep learning.
Med Phys. 2023 Sep;50(9):5643-5656. doi: 10.1002/mp.16385. Epub 2023 Apr 5.
5
Improvement of image quality in PET using post-reconstruction hybrid spatial-frequency domain filtering.
Phys Med Biol. 2018 Oct 24;63(21):215010. doi: 10.1088/1361-6560/aae573.
6
Content-oriented sparse representation (COSR) for CT denoising with preservation of texture and edge.
Med Phys. 2018 Nov;45(11):4942-4954. doi: 10.1002/mp.13189. Epub 2018 Oct 10.
9
Iterative image-domain decomposition for dual-energy CT.
Med Phys. 2014 Apr;41(4):041901. doi: 10.1118/1.4866386.
10
Adaptively Tuned Iterative Low Dose CT Image Denoising.
Comput Math Methods Med. 2015;2015:638568. doi: 10.1155/2015/638568. Epub 2015 May 24.

引用本文的文献

2
Influence of reconstruction parameters of micro-computed tomography on the analysis of bone mineral density.
Imaging Sci Dent. 2020 Jun;50(2):153-159. doi: 10.5624/isd.2020.50.2.153. Epub 2020 Jun 18.
3
Evaluation of a low-dose protocol for cone beam computed tomography of the temporomandibular joint.
Dentomaxillofac Radiol. 2020 Sep 1;49(6):20190495. doi: 10.1259/dmfr.20190495. Epub 2020 Apr 9.
4
Effect of micro-computed tomography reconstruction protocols on bone fractal dimension analysis.
Dentomaxillofac Radiol. 2019 Dec;48(8):20190235. doi: 10.1259/dmfr.20190235. Epub 2019 Aug 13.
5
Modelling of stress distribution and fracture in dental occlusal fissures.
Sci Rep. 2019 Mar 18;9(1):4682. doi: 10.1038/s41598-019-41304-z.
6
Microcomputed Tomography Calibration Using Polymers and Minerals for Enamel Mineral Content Quantitation.
Med Princ Pract. 2019;28(3):247-255. doi: 10.1159/000499186. Epub 2019 Mar 1.

本文引用的文献

1
Three dimensional data-driven multi scale atomic representation of optical coherence tomography.
IEEE Trans Med Imaging. 2015 May;34(5):1042-62. doi: 10.1109/TMI.2014.2374354.
2
Bayesian denoising in digital radiography: a comparison in the dental field.
Comput Med Imaging Graph. 2013 Jan;37(1):28-39. doi: 10.1016/j.compmedimag.2012.10.003. Epub 2012 Nov 26.
4
Enamel lesion parameter correlations between polychromatic micro-CT and TMR.
J Dent Res. 2012 Jun;91(6):586-91. doi: 10.1177/0022034512444127. Epub 2012 Apr 3.
6
BM3D frames and variational image deblurring.
IEEE Trans Image Process. 2012 Apr;21(4):1715-28. doi: 10.1109/TIP.2011.2176954. Epub 2011 Nov 22.
7
An automated assessment algorithm for micro-CT images of occlusal caries.
Surgeon. 2010 Dec;8(6):334-40. doi: 10.1016/j.surge.2010.06.007. Epub 2010 Jul 22.
8
Application of polychromatic µCT for mineral density determination.
J Dent Res. 2011 Jan;90(1):18-30. doi: 10.1177/0022034510378429. Epub 2010 Sep 21.
9
State of the art of Micro-CT applications in dental research.
Int J Oral Sci. 2009 Dec;1(4):177-88. doi: 10.4248/IJOS09031.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验