Suppr超能文献

在肺发育过程中,Wnt和FGF介导上皮-间充质相互作用。

Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development.

作者信息

Volckaert Thomas, De Langhe Stijn P

机构信息

Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colorado; The Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.

出版信息

Dev Dyn. 2015 Mar;244(3):342-66. doi: 10.1002/dvdy.24234. Epub 2014 Dec 29.

Abstract

BACKGROUND

The adaptation to terrestrial life required the development of an organ capable of efficient air-blood gas exchange. To meet the metabolic load of cellular respiration, the mammalian respiratory system has evolved from a relatively simple structure, similar to the two-tube amphibian lung, to a highly complex tree-like system of branched epithelial airways connected to a vast network of gas exchanging units called alveoli. The development of such an elaborate organ in a relatively short time window is therefore an extraordinary feat and involves an intimate crosstalk between mesodermal and endodermal cell lineages.

RESULTS

This review describes the molecular processes governing lung development with an emphasis on the current knowledge on the role of Wnt and FGF signaling in lung epithelial differentiation.

CONCLUSIONS

The Wnt and FGF signaling pathways are crucial for the dynamic and reciprocal communication between epithelium and mesenchyme during lung development. In addition, some of this developmental crosstalk is reemployed in the adult lung after injury to drive regeneration, and may, when aberrantly or chronically activated, result in chronic lung diseases. Novel insights into how the Wnt and FGF pathways interact and are integrated into a complex gene regulatory network will not only provide us with essential information about how the lung regenerates itself, but also enhance our understanding of the pathogenesis of chronic lung diseases, as well as improve the controlled differentiation of lung epithelium from pluripotent stem cells.

摘要

背景

适应陆地生活需要发展出一种能够进行高效气血气体交换的器官。为了满足细胞呼吸的代谢负荷,哺乳动物的呼吸系统已从相对简单的结构(类似于双管型两栖动物肺)进化为高度复杂的树状分支上皮气道系统,该系统与一个庞大的称为肺泡的气体交换单元网络相连。因此,在相对较短的时间窗口内发育出这样一个精巧的器官是一项非凡的壮举,并且涉及中胚层和内胚层细胞谱系之间的密切相互作用。

结果

本综述描述了控制肺发育的分子过程,重点是关于Wnt和FGF信号在肺上皮分化中作用的当前知识。

结论

Wnt和FGF信号通路对于肺发育过程中上皮和间充质之间的动态和相互交流至关重要。此外,这种发育过程中的一些相互作用在成年肺损伤后被重新利用以驱动再生,并且当异常或慢性激活时,可能导致慢性肺病。对Wnt和FGF通路如何相互作用并整合到复杂基因调控网络中的新见解不仅将为我们提供有关肺如何自我再生的基本信息,还将增强我们对慢性肺病发病机制的理解,以及改善多能干细胞向肺上皮细胞的可控分化。

相似文献

1
Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development.
Dev Dyn. 2015 Mar;244(3):342-66. doi: 10.1002/dvdy.24234. Epub 2014 Dec 29.
2
Tissue crosstalk in lung development.
J Cell Biochem. 2014 Sep;115(9):1469-77. doi: 10.1002/jcb.24811.
3
Canonical Wnt signaling activity in early stages of chick lung development.
PLoS One. 2014 Dec 2;9(12):e112388. doi: 10.1371/journal.pone.0112388. eCollection 2014.
4
FGF, TGFβ and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells.
J Tissue Eng Regen Med. 2015 Apr;9(4):332-42. doi: 10.1002/term.1744. Epub 2013 Apr 11.
5
Coordination of epithelial branching and salivary gland lumen formation by Wnt and FGF signals.
Dev Biol. 2011 Oct 1;358(1):156-67. doi: 10.1016/j.ydbio.2011.07.023. Epub 2011 Jul 23.
6
Fgf10 Signaling in Lung Development, Homeostasis, Disease, and Repair After Injury.
Front Genet. 2018 Sep 25;9:418. doi: 10.3389/fgene.2018.00418. eCollection 2018.
8
Tissue-specific roles of FGF signaling in external genitalia development.
Dev Dyn. 2015 Jun;244(6):759-73. doi: 10.1002/dvdy.24277.
9
An FGF-WNT gene regulatory network controls lung mesenchyme development.
Dev Biol. 2008 Jul 15;319(2):426-36. doi: 10.1016/j.ydbio.2008.04.009. Epub 2008 Jun 3.

引用本文的文献

1
Ferroptosis in idiopathic pulmonary fibrosis: mechanisms, impact, and therapeutic opportunities.
Front Immunol. 2025 May 21;16:1567994. doi: 10.3389/fimmu.2025.1567994. eCollection 2025.
2
3
Palmitoyl-carnitine Regulates Lung Development by Promoting Pulmonary Mesenchyme Proliferation.
Research (Wash D C). 2025 Mar 18;8:0620. doi: 10.34133/research.0620. eCollection 2025.
5
Exploiting mechanisms for hierarchical branching structure of lung airway.
PLoS One. 2024 Aug 30;19(8):e0309464. doi: 10.1371/journal.pone.0309464. eCollection 2024.
7
Mechanics of Lung Development.
Adv Anat Embryol Cell Biol. 2023;236:131-150. doi: 10.1007/978-3-031-38215-4_6.
8
Preferential FGF18/FGFR activity in pseudoglandular versus canalicular stage human lung fibroblasts.
Front Cell Dev Biol. 2023 Aug 28;11:1220002. doi: 10.3389/fcell.2023.1220002. eCollection 2023.
9
Conditional knockout of ITGB4 in bronchial epithelial cells directs bronchopulmonary dysplasia.
J Cell Mol Med. 2023 Dec;27(23):3760-3772. doi: 10.1111/jcmm.17948. Epub 2023 Sep 12.
10
Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk.
Genes Dis. 2023 Mar 24;11(1):103-134. doi: 10.1016/j.gendis.2023.01.030. eCollection 2024 Jan.

本文引用的文献

1
Mesenchymal cells. Defining a mesenchymal progenitor niche at single-cell resolution.
Science. 2014 Nov 14;346(6211):1258810. doi: 10.1126/science.1258810.
3
A Molecular atlas of Xenopus respiratory system development.
Dev Dyn. 2015 Jan;244(1):69-85. doi: 10.1002/dvdy.24180. Epub 2014 Sep 11.
4
Wnt ligand/Frizzled 2 receptor signaling regulates tube shape and branch-point formation in the lung through control of epithelial cell shape.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12444-9. doi: 10.1073/pnas.1406639111. Epub 2014 Aug 11.
6
Crucial requirement of ERK/MAPK signaling in respiratory tract development.
Development. 2014 Aug;141(16):3197-211. doi: 10.1242/dev.110254.
7
Lung regeneration: mechanisms, applications and emerging stem cell populations.
Nat Med. 2014 Aug;20(8):822-32. doi: 10.1038/nm.3642.
9
Yap tunes airway epithelial size and architecture by regulating the identity, maintenance, and self-renewal of stem cells.
Dev Cell. 2014 Jul 28;30(2):151-65. doi: 10.1016/j.devcel.2014.06.004. Epub 2014 Jul 17.
10
The hippo pathway effector Yap controls patterning and differentiation of airway epithelial progenitors.
Dev Cell. 2014 Jul 28;30(2):137-50. doi: 10.1016/j.devcel.2014.06.003. Epub 2014 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验