Ranade Sanjeev S, Woo Seung-Hyun, Dubin Adrienne E, Moshourab Rabih A, Wetzel Christiane, Petrus Matt, Mathur Jayanti, Bégay Valérie, Coste Bertrand, Mainquist James, Wilson A J, Francisco Allain G, Reddy Kritika, Qiu Zhaozhu, Wood John N, Lewin Gary R, Patapoutian Ardem
Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA.
1] Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092 Berlin, Germany [2] Klinik für Anästhesiologie mit Schwerpunkt Operative Intensivmedizin, Campus Charité Mitte and Virchow-Klinikum Charité, Universitätsmedizin Berlin, Augustburgerplatz 1, 13353 Berlin, Germany.
Nature. 2014 Dec 4;516(7529):121-5. doi: 10.1038/nature13980.
The sense of touch provides critical information about our physical environment by transforming mechanical energy into electrical signals. It is postulated that mechanically activated cation channels initiate touch sensation, but the identity of these molecules in mammals has been elusive. Piezo2 is a rapidly adapting, mechanically activated ion channel expressed in a subset of sensory neurons of the dorsal root ganglion and in cutaneous mechanoreceptors known as Merkel-cell-neurite complexes. It has been demonstrated that Merkel cells have a role in vertebrate mechanosensation using Piezo2, particularly in shaping the type of current sent by the innervating sensory neuron; however, major aspects of touch sensation remain intact without Merkel cell activity. Here we show that mice lacking Piezo2 in both adult sensory neurons and Merkel cells exhibit a profound loss of touch sensation. We precisely localize Piezo2 to the peripheral endings of a broad range of low-threshold mechanoreceptors that innervate both hairy and glabrous skin. Most rapidly adapting, mechanically activated currents in dorsal root ganglion neuronal cultures are absent in Piezo2 conditional knockout mice, and ex vivo skin nerve preparation studies show that the mechanosensitivity of low-threshold mechanoreceptors strongly depends on Piezo2. This cellular phenotype correlates with an unprecedented behavioural phenotype: an almost complete deficit in light-touch sensation in multiple behavioural assays, without affecting other somatosensory functions. Our results highlight that a single ion channel that displays rapidly adapting, mechanically activated currents in vitro is responsible for the mechanosensitivity of most low-threshold mechanoreceptor subtypes involved in innocuous touch sensation. Notably, we find that touch and pain sensation are separable, suggesting that as-yet-unknown mechanically activated ion channel(s) must account for noxious (painful) mechanosensation.
触觉通过将机械能转化为电信号,提供有关我们物理环境的关键信息。据推测,机械激活的阳离子通道启动触觉,但这些分子在哺乳动物中的身份一直难以捉摸。Piezo2是一种快速适应的机械激活离子通道,在背根神经节的一部分感觉神经元以及称为默克尔细胞 - 神经突复合体的皮肤机械感受器中表达。已经证明,默克尔细胞在使用Piezo2的脊椎动物机械感觉中起作用,特别是在塑造支配感觉神经元发送的电流类型方面;然而,没有默克尔细胞活动,触觉的主要方面仍然完好无损。在这里,我们表明,在成年感觉神经元和默克尔细胞中均缺乏Piezo2的小鼠表现出触觉的严重丧失。我们将Piezo2精确地定位到广泛的低阈值机械感受器的外周末端,这些感受器支配着有毛皮肤和无毛皮肤。在Piezo2条件性敲除小鼠中,背根神经节神经元培养物中大多数快速适应的机械激活电流缺失,离体皮肤神经制备研究表明,低阈值机械感受器的机械敏感性强烈依赖于Piezo2。这种细胞表型与前所未有的行为表型相关:在多种行为试验中,轻触觉几乎完全缺失,而不影响其他躯体感觉功能。我们的结果强调,一种在体外显示快速适应的机械激活电流的单一离子通道,负责参与无害触觉的大多数低阈值机械感受器亚型的机械敏感性。值得注意的是,我们发现触觉和痛觉是可分离的,这表明尚未知晓的机械激活离子通道必须负责有害(疼痛)机械感觉。