Suppr超能文献

压电 2 电压阻断调节机械痛觉敏感性。

Piezo2 voltage-block regulates mechanical pain sensitivity.

机构信息

Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany.

Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.

出版信息

Brain. 2024 Oct 3;147(10):3487-3500. doi: 10.1093/brain/awae227.

Abstract

PIEZO2 is a trimeric mechanically-gated ion channel expressed by most sensory neurons in the dorsal root ganglia. Mechanosensitive PIEZO2 channels are also genetically required for normal touch sensation in both mice and humans. We previously showed that PIEZO2 channels are also strongly modulated by membrane voltage. Specifically, it is only at very positive voltages that all channels are available for opening by mechanical force. Conversely, most PIEZO2 channels are blocked at normal negative resting membrane potentials. The physiological function of this unusual biophysical property of PIEZO2 channels, however, remained unknown. We characterized the biophysical properties of three PIEZO2 ion channel mutations at an evolutionarily conserved arginine (R2756). Using genome engineering in mice we generated Piezo2R2756H/R2756H and Piezo2R2756K/R2756K knock-in mice to characterize the physiological consequences of altering PIEZO2 voltage sensitivity in vivo. We measured endogenous mechanosensitive currents in sensory neurons isolated from the dorsal root ganglia and characterized mechanoreceptor and nociceptor function using electrophysiology. Mice were also assessed behaviourally and morphologically. Mutations at the conserved Arginine (R2756) dramatically changed the biophysical properties of the channel relieving voltage block and lowering mechanical thresholds for channel activation. Piezo2R2756H/R2756H and Piezo2R2756K/R2756K knock-in mice that were homozygous for gain-of-function mutations were viable and were tested for sensory changes. Surprisingly, mechanosensitive currents in nociceptors, neurons that detect noxious mechanical stimuli, were substantially sensitized in Piezo2 knock-in mice, but mechanosensitive currents in most mechanoreceptors that underlie touch sensation were only mildly affected by the same mutations. Single-unit electrophysiological recordings from sensory neurons innervating the glabrous skin revealed that rapidly-adapting mechanoreceptors that innervate Meissner's corpuscles exhibited slightly decreased mechanical thresholds in Piezo2 knock-in mice. Consistent with measurements of mechanically activated currents in isolated sensory neurons essentially all cutaneous nociceptors, both fast conducting Aδ-mechanonociceptors and unmyelinated C-fibre nociceptors were substantially more sensitive to mechanical stimuli and indeed acquired receptor properties similar to ultrasensitive touch receptors in Piezo2 knock-in mice. Mechanical stimuli also induced enhanced ongoing activity in cutaneous nociceptors in Piezo2 knock-in mice and hyper-sensitive PIEZO2 channels were sufficient alone to drive ongoing activity, even in isolated nociceptive neurons. Consistently, Piezo2 knock-in mice showed substantial behavioural hypersensitivity to noxious mechanical stimuli. Our data indicate that ongoing activity and sensitization of nociceptors, phenomena commonly found in human chronic pain syndromes, can be driven by relieving the voltage-block of PIEZO2 ion channels. Indeed, membrane depolarization caused by multiple noxious stimuli may sensitize nociceptors by relieving voltage-block of PIEZO2 channels.

摘要

PIEZO2 是一种三聚体机械门控离子通道,存在于背根神经节中的大多数感觉神经元中。机械敏感的 PIEZO2 通道在小鼠和人类的正常触觉感知中也是遗传必需的。我们之前表明,PIEZO2 通道也受到膜电压的强烈调节。具体来说,只有在非常正的电压下,所有通道才能通过机械力打开。相反,大多数 PIEZO2 通道在正常的负静息膜电位下被阻断。然而,PIEZO2 通道这种不寻常的生物物理特性的生理功能仍然未知。我们在进化上保守的精氨酸(R2756)处对三种 PIEZO2 离子通道突变的生物物理特性进行了表征。我们使用基因组工程在小鼠中生成了 Piezo2R2756H/R2756H 和 Piezo2R2756K/R2756K 敲入小鼠,以在体内表征改变 PIEZO2 电压敏感性的生理后果。我们测量了来自背根神经节的感觉神经元中内源性机械敏感电流,并使用电生理学表征机械感受器和伤害感受器功能。还对小鼠进行了行为和形态学评估。保守精氨酸(R2756)处的突变极大地改变了通道的生物物理特性,缓解了电压阻断并降低了通道激活的机械阈值。PIEZO2R2756H/R2756H 和 Piezo2R2756K/R2756K 敲入小鼠是杂合子功能获得性突变的纯合子,具有生存能力,并进行了感觉变化测试。令人惊讶的是,在 Piezo2 敲入小鼠中,检测到有害机械刺激的伤害感受器中的机械敏感电流明显敏化,但对触觉感觉的大多数机械感受器中的机械敏感电流仅受到相同突变的轻度影响。对支配无毛皮肤的感觉神经元的单个单元电生理记录显示,支配 Meissner 小体的快速适应机械感受器的机械阈值在 Piezo2 敲入小鼠中略有降低。与分离的感觉神经元中机械激活电流的测量一致,基本上所有皮肤伤害感受器,包括快速传导的 Aδ-机械伤害感受器和无髓 C 纤维伤害感受器,对机械刺激的敏感性显著增加,并且确实获得了类似于 Piezo2 敲入小鼠中超敏感触觉感受器的受体特性。机械刺激也诱导 Piezo2 敲入小鼠中的皮肤伤害感受器的持续活动增强,并且超敏 PIEZO2 通道本身足以驱动持续活动,即使在分离的伤害感受器神经元中也是如此。一致地,Piezo2 敲入小鼠对有害机械刺激表现出明显的行为超敏性。我们的数据表明,持续活动和伤害感受器的敏化,这些现象在人类慢性疼痛综合征中很常见,可以通过缓解 PIEZO2 离子通道的电压阻断来驱动。事实上,多个有害刺激引起的膜去极化可能通过缓解 PIEZO2 通道的电压阻断来敏化伤害感受器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ef9/11449130/ad996e69214d/awae227f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验