DeVito Stefanie Renee, Ortiz-Riaño Emilio, Martínez-Sobrido Luis, Munger Joshua
Departments of Biochemistry and Biophysics and.
Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):18019-24. doi: 10.1073/pnas.1415864111. Epub 2014 Dec 3.
Human cytomegalovirus (HCMV) induces numerous changes to the host metabolic network that are critical for high-titer viral replication. We find that HCMV infection substantially induces de novo pyrimidine biosynthetic flux. This activation is important for HCMV replication because inhibition of pyrimidine biosynthetic enzymes substantially decreases the production of infectious virus, which can be rescued through medium supplementation with pyrimidine biosynthetic intermediates. Metabolomic analysis revealed that pyrimidine biosynthetic inhibition considerably reduces the levels of various UDP-sugar metabolites in HCMV-infected, but not mock-infected, cells. Further, UDP-sugar biosynthesis, which provides the sugar substrates required for glycosylation reactions, was found to be induced during HCMV infection. Pyrimidine biosynthetic inhibition also attenuated the glycosylation of the envelope glycoprotein B (gB). Both glycosylation of gB and viral growth were restored by medium supplementation with either UDP-sugar metabolites or pyrimidine precursors. These results indicate that HCMV drives de novo-synthesized pyrimidines to UDP-sugar biosynthesis to support virion protein glycosylation. The importance of this link between pyrimidine biosynthesis and UDP-sugars appears to be partially shared among diverse virus families, because UDP-sugar metabolites rescued the growth attenuation associated with pyrimidine biosynthetic inhibition during influenza A and vesicular stomatitis virus infection, but not murine hepatitis virus infection. In total, our results indicate that viruses can specifically modulate pyrimidine metabolic flux to provide the glycosyl subunits required for protein glycosylation and production of high titers of infectious progeny.
人巨细胞病毒(HCMV)会对宿主代谢网络引发诸多变化,这些变化对高滴度病毒复制至关重要。我们发现HCMV感染会显著诱导嘧啶从头生物合成通量。这种激活对HCMV复制很重要,因为抑制嘧啶生物合成酶会大幅降低感染性病毒的产生,而通过在培养基中补充嘧啶生物合成中间体可挽救这一情况。代谢组学分析表明,嘧啶生物合成抑制会显著降低HCMV感染而非模拟感染细胞中各种UDP - 糖代谢物的水平。此外,发现HCMV感染期间会诱导提供糖基化反应所需糖底物的UDP - 糖生物合成。嘧啶生物合成抑制还减弱了包膜糖蛋白B(gB)的糖基化。通过在培养基中补充UDP - 糖代谢物或嘧啶前体,gB的糖基化和病毒生长均得以恢复。这些结果表明,HCMV将从头合成的嘧啶驱动至UDP - 糖生物合成,以支持病毒粒子蛋白糖基化。嘧啶生物合成与UDP - 糖之间这种联系的重要性似乎在不同病毒家族中部分共享,因为UDP - 糖代谢物挽救了甲型流感病毒和水疱性口炎病毒感染期间与嘧啶生物合成抑制相关的生长减弱,但对鼠肝炎病毒感染无效。总体而言,我们的结果表明,病毒可特异性调节嘧啶代谢通量,以提供蛋白糖基化和产生高滴度感染性子代所需的糖基亚基。