Suppr超能文献

鼠肝炎病毒nsp4上的突变会改变病毒适应性和膜修饰。

Mutations across murine hepatitis virus nsp4 alter virus fitness and membrane modifications.

作者信息

Beachboard Dia C, Anderson-Daniels Jordan M, Denison Mark R

机构信息

Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA The Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

J Virol. 2015 Feb;89(4):2080-9. doi: 10.1128/JVI.02776-14. Epub 2014 Dec 3.

Abstract

UNLABELLED

A common feature of infection by positive-sense RNA virus is the modification of host cell cytoplasmic membranes that serve as sites of viral RNA synthesis. Coronaviruses induce double-membrane vesicles (DMVs), but the role of DMVs in replication and virus fitness remains unclear. Coronaviruses encode 16 nonstructural proteins (nsps), three of which, nsp3, nsp4, and nsp6, are necessary and sufficient for DMV formation. It has been shown previously that mutations in murine hepatitis virus (MHV) nsp4 loop 1 that alter nsp4 glycosylation are associated with disrupted DMV formation and result in changes in virus replication and RNA synthesis. However, it is not known whether DMV morphology or another function of nsp4 glycosylation is responsible for effects on virus replication. In this study, we tested whether mutations across nsp4, both alone and in combination with mutations that abolish nsp4 glycosylation, affected DMV formation, replication, and fitness. Residues in nsp4 distinct from glycosylation sites, particularly in the endoplasmic reticulum (ER) luminal loop 1, independently disrupted both the number and morphology of DMVs and exacerbated DMV changes associated with loss of glycosylation. Mutations that altered DMV morphology but not glycosylation did not affect virus fitness while viruses lacking nsp4 glycosylation exhibited a loss in fitness. The results support the hypothesis that DMV morphology and numbers are not key determinants of virus fitness. The results also suggest that nsp4 glycosylation serves roles in replication in addition to the organization and stability of MHV-induced double-membrane vesicles.

IMPORTANCE

All positive-sense RNA viruses modify host cytoplasmic membranes for viral replication complex formation. Thus, defining the mechanisms of virus-induced membrane modifications is essential for both understanding virus replication and development of novel approaches to virus inhibition. Coronavirus-induced membrane changes include double-membrane vesicles (DMVs) and convoluted membranes. Three viral nonstructural proteins (nsps), nsp3, nsp4, and nsp6, are known to be required for DMV formation. It is unknown how these proteins induce membrane modification or which regions of the proteins are involved in DMV formation and stability. In this study, we show that mutations across nsp4 delay virus replication and disrupt DMV formation and that loss of nsp4 glycosylation is associated with a substantial fitness cost. These results support a critical role for nsp4 in DMV formation and virus fitness.

摘要

未标记

正链RNA病毒感染的一个共同特征是宿主细胞质膜的修饰,这些膜作为病毒RNA合成的场所。冠状病毒会诱导双膜囊泡(DMV)形成,但DMV在病毒复制和适应性方面的作用仍不清楚。冠状病毒编码16种非结构蛋白(nsp),其中nsp3、nsp4和nsp6这三种蛋白对于DMV的形成是必需且充分的。先前已表明,鼠肝炎病毒(MHV)nsp4环1中改变nsp4糖基化的突变与DMV形成的破坏有关,并导致病毒复制和RNA合成的变化。然而,尚不清楚DMV形态或nsp4糖基化的其他功能是否对病毒复制产生影响。在本研究中,我们测试了nsp4上的突变单独以及与消除nsp4糖基化的突变组合是否会影响DMV的形成、复制和适应性。nsp4中与糖基化位点不同的残基,特别是在内质网(ER)腔环1中,独立地破坏了DMV的数量和形态,并加剧了与糖基化缺失相关的DMV变化。改变DMV形态但不影响糖基化的突变不影响病毒适应性,而缺乏nsp4糖基化的病毒适应性降低。这些结果支持了DMV形态和数量不是病毒适应性关键决定因素的假设。结果还表明,nsp4糖基化除了在MHV诱导的双膜囊泡的组织和稳定性方面发挥作用外,还在复制中发挥作用。

重要性

所有正链RNA病毒都会修饰宿主细胞质膜以形成病毒复制复合体。因此,确定病毒诱导的膜修饰机制对于理解病毒复制和开发新型病毒抑制方法都至关重要。冠状病毒诱导的膜变化包括双膜囊泡(DMV)和卷曲膜。已知三种病毒非结构蛋白(nsp),即nsp3、nsp4和nsp6,是DMV形成所必需的。尚不清楚这些蛋白如何诱导膜修饰,或者蛋白的哪些区域参与DMV的形成和稳定性。在本研究中,我们表明nsp4上的突变会延迟病毒复制并破坏DMV形成,并且nsp4糖基化的缺失与显著的适应性代价相关。这些结果支持了nsp4在DMV形成和病毒适应性中的关键作用。

相似文献

1
Mutations across murine hepatitis virus nsp4 alter virus fitness and membrane modifications.
J Virol. 2015 Feb;89(4):2080-9. doi: 10.1128/JVI.02776-14. Epub 2014 Dec 3.
5
Mutation in murine coronavirus replication protein nsp4 alters assembly of double membrane vesicles.
Virology. 2008 May 25;375(1):118-29. doi: 10.1016/j.virol.2008.01.018. Epub 2008 Mar 4.
7
Genetic analysis of Murine hepatitis virus nsp4 in virus replication.
J Virol. 2007 Nov;81(22):12554-63. doi: 10.1128/JVI.01257-07. Epub 2007 Sep 12.
9
Oligomeric assembly of the C-terminal and transmembrane region of SARS-CoV-2 nsp3.
J Virol. 2024 Apr 16;98(4):e0157523. doi: 10.1128/jvi.01575-23. Epub 2024 Mar 14.

引用本文的文献

2
Expression of SARS-CoV-2 Nonstructural Proteins 3 and 4 Can Tune the Unfolded Protein Response in Cell Culture.
J Proteome Res. 2024 Jan 5;23(1):356-367. doi: 10.1021/acs.jproteome.3c00600. Epub 2023 Dec 1.
3
Endomembrane remodeling in SARS-CoV-2 infection.
Cell Insight. 2022 May 17;1(3):100031. doi: 10.1016/j.cellin.2022.100031. eCollection 2022 Jun.
6
Thiopurines inhibit coronavirus Spike protein processing and incorporation into progeny virions.
PLoS Pathog. 2022 Sep 19;18(9):e1010832. doi: 10.1371/journal.ppat.1010832. eCollection 2022 Sep.
7
Two Years into the COVID-19 Pandemic: Lessons Learned.
ACS Infect Dis. 2022 Sep 9;8(9):1758-1814. doi: 10.1021/acsinfecdis.2c00204. Epub 2022 Aug 8.
8
Functional mutations of SARS-CoV-2: implications to viral transmission, pathogenicity and immune escape.
Chin Med J (Engl). 2022 May 20;135(10):1213-1222. doi: 10.1097/CM9.0000000000002158.
9
Coronavirus RNA Synthesis Takes Place within Membrane-Bound Sites.
Viruses. 2021 Dec 17;13(12):2540. doi: 10.3390/v13122540.
10
Genome composition and genetic characterization of SARS-CoV-2.
Saudi J Biol Sci. 2021 Mar;28(3):1978-1989. doi: 10.1016/j.sjbs.2020.12.053. Epub 2021 Jan 6.

本文引用的文献

5
Murine hepatitis virus nsp4 N258T mutants are not temperature-sensitive.
Virology. 2013 Jan 20;435(2):210-3. doi: 10.1016/j.virol.2012.10.001. Epub 2012 Oct 23.
6
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
7
Mobility and interactions of coronavirus nonstructural protein 4.
J Virol. 2011 May;85(9):4572-7. doi: 10.1128/JVI.00042-11. Epub 2011 Feb 23.
8
Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus.
Cell Microbiol. 2010 Jun;12(6):844-61. doi: 10.1111/j.1462-5822.2010.01437.x. Epub 2010 Jan 20.
10
Structure of the C-terminal domain of nsp4 from feline coronavirus.
Acta Crystallogr D Biol Crystallogr. 2009 Aug;65(Pt 8):839-46. doi: 10.1107/S0907444909018253. Epub 2009 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验