Gkeka Paraskevi, Angelikopoulos Panagiotis, Sarkisov Lev, Cournia Zoe
Biomedical Research Foundation, Academy of Athens, Athens, Greece.
Computational Science and Engineering Laboratory, Institute of Computational Science, D-MAVT, ETH Zurich, Switzerland.
PLoS Comput Biol. 2014 Dec 4;10(12):e1003917. doi: 10.1371/journal.pcbi.1003917. eCollection 2014 Dec.
Intracellular uptake of nanoparticles (NPs) may induce phase transitions, restructuring, stretching, or even complete disruption of the cell membrane. Therefore, NP cytotoxicity assessment requires a thorough understanding of the mechanisms by which these engineered nanostructures interact with the cell membrane. In this study, extensive Coarse-Grained Molecular Dynamics (MD) simulations are performed to investigate the partitioning of an anionic, ligand-decorated NP in model membranes containing dipalmitoylphosphatidylcholine (DPPC) phospholipids and different concentrations of cholesterol. Spontaneous fusion and translocation of the anionic NP is not observed in any of the 10-µs unbiased MD simulations, indicating that longer timescales may be required for such phenomena to occur. This picture is supported by the free energy analysis, revealing a considerable free energy barrier for NP translocation across the lipid bilayer. 5-µs unbiased MD simulations with the NP inserted in the bilayer core reveal that the hydrophobic and hydrophilic ligands of the NP surface rearrange to form optimal contacts with the lipid bilayer, leading to the so-called snorkeling effect. Inside cholesterol-containing bilayers, the NP induces rearrangement of the structure of the lipid bilayer in its vicinity from the liquid-ordered to the liquid phase spanning a distance almost twice its core radius (8-10 nm). Based on the physical insights obtained in this study, we propose a mechanism of cellular anionic NP partitioning, which requires structural rearrangements of both the NP and the bilayer, and conclude that the translocation of anionic NPs through cholesterol-rich membranes must be accompanied by formation of cholesterol-lean regions in the proximity of NPs.
纳米颗粒(NPs)的细胞内摄取可能会诱导相变、重组、拉伸,甚至使细胞膜完全破裂。因此,评估NP的细胞毒性需要深入了解这些工程化纳米结构与细胞膜相互作用的机制。在本研究中,我们进行了广泛的粗粒度分子动力学(MD)模拟,以研究阴离子型、配体修饰的NP在含有二棕榈酰磷脂酰胆碱(DPPC)磷脂和不同浓度胆固醇的模型膜中的分配情况。在任何10微秒的无偏MD模拟中均未观察到阴离子NP的自发融合和转位,这表明此类现象的发生可能需要更长的时间尺度。自由能分析支持了这一观点,揭示了NP跨脂质双层转位存在相当大的自由能障碍。将NP插入双层核心进行的5微秒无偏MD模拟表明,NP表面的疏水和亲水配体会重新排列,以与脂质双层形成最佳接触,从而导致所谓的“潜水效应”。在含胆固醇的双层膜中,NP会诱导其附近脂质双层结构从液晶态重排为液态,跨度几乎是其核心半径(8 - 10纳米)的两倍。基于本研究获得的物理见解,我们提出了一种细胞内阴离子NP分配的机制,该机制需要NP和双层膜都进行结构重排,并得出结论:阴离子NP通过富含胆固醇的膜的转位必须伴随着NP附近形成低胆固醇区域。