Pelle Dominic W, Peacock Jacqueline D, Schmidt Courtney L, Kampfschulte Kevin, Scholten Donald J, Russo Scott S, Easton Kenneth J, Steensma Matthew R
Laboratory of Musculoskeletal Oncology, Center for Skeletal Disease and Tumor Metastasis, Van Andel Institute, Grand Rapids, Michigan, United States of America; Department of Orthopaedic Surgery, Grand Rapids Medical Education Partners, Grand Rapids, Michigan, United States of America.
Laboratory of Musculoskeletal Oncology, Center for Skeletal Disease and Tumor Metastasis, Van Andel Institute, Grand Rapids, Michigan, United States of America.
PLoS One. 2014 Dec 4;9(12):e112454. doi: 10.1371/journal.pone.0112454. eCollection 2014.
Intervertebral disc (IVD) homeostasis is mediated through a combination of micro-environmental and biomechanical factors, all of which are subject to genetic influences. The aim of this study is to develop and characterize a genetically tractable, ex vivo organ culture model that can be used to further elucidate mechanisms of intervertebral disc disease. Specifically, we demonstrate that IVD disc explants (1) maintain their native phenotype in prolonged culture, (2) are responsive to exogenous stimuli, and (3) that relevant homeostatic regulatory mechanisms can be modulated through ex-vivo genetic recombination. We present a novel technique for isolation of murine IVD explants with demonstration of explant viability (CMFDA/propidium iodide staining), disc anatomy (H&E), maintenance of extracellular matrix (ECM) (Alcian Blue staining), and native expression profile (qRT-PCR) as well as ex vivo genetic recombination (mT/mG reporter mice; AdCre) following 14 days of culture in DMEM media containing 10% fetal bovine serum, 1% L-glutamine, and 1% penicillin/streptomycin. IVD explants maintained their micro-anatomic integrity, ECM proteoglycan content, viability, and gene expression profile consistent with a homeostatic drive in culture. Treatment of genetically engineered explants with cre-expressing adenovirus efficaciously induced ex vivo genetic recombination in a variety of genetically engineered mouse models. Exogenous administration of IL-1ß and TGF-ß3 resulted in predicted catabolic and anabolic responses, respectively. Genetic recombination of TGFBR1fl/fl explants resulted in constitutively active TGF-ß signaling that matched that of exogenously administered TGF-ß3. Our results illustrate the utility of the murine intervertebral disc explant to investigate mechanisms of intervertebral disc degeneration.
椎间盘(IVD)的稳态是通过微环境和生物力学因素的共同作用来介导的,所有这些因素都受到遗传影响。本研究的目的是开发并表征一种具有遗传易处理性的离体器官培养模型,该模型可用于进一步阐明椎间盘疾病的机制。具体而言,我们证明IVD椎间盘外植体(1)在长时间培养中保持其天然表型,(2)对外源刺激有反应,并且(3)相关的稳态调节机制可以通过离体基因重组进行调节。我们提出了一种分离小鼠IVD外植体的新技术,并展示了外植体的活力(CMFDA/碘化丙啶染色)、椎间盘解剖结构(苏木精和伊红染色)、细胞外基质(ECM)的维持(阿尔辛蓝染色)、天然表达谱(定量逆转录聚合酶链反应)以及在含有10%胎牛血清、1%L-谷氨酰胺和1%青霉素/链霉素的DMEM培养基中培养14天后的离体基因重组(mT/mG报告基因小鼠;腺病毒介导的Cre重组酶)。IVD外植体在培养中保持其微观解剖完整性、ECM蛋白聚糖含量、活力和与稳态驱动一致的基因表达谱。用表达cre的腺病毒处理基因工程外植体,在多种基因工程小鼠模型中有效诱导了离体基因重组。外源性给予白细胞介素-1β和转化生长因子-β3分别导致了预期的分解代谢和合成代谢反应。转化生长因子β受体1(TGFBR1)条件性敲除外植体的基因重组导致了组成型激活的转化生长因子-β信号传导,与外源性给予转化生长因子-β3的情况相匹配。我们的结果说明了小鼠椎间盘外植体在研究椎间盘退变机制方面的实用性。