Jiménez Juan J, Decaëns Thibaud, Lavelle Patrick, Rossi Jean-Pierre
Department of Biodiversity Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE), Spanish National Research Council (CSIC), Jaca (Huesca), ES-22700, Spain.
Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS, 1919 Route de Mende, 34293, Montpellier Cedex 5, France.
BMC Ecol. 2014 Dec 5;14:26. doi: 10.1186/s12898-014-0026-4.
Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses.
The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation.
A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.
研究物种、种群和群落空间格局的驱动因素和决定因素是生态学的核心内容。观察到的群落组合结构是确定性非生物因素(环境限制)和生物因素(物种间正负相互作用)以及随机定殖事件(历史偶然性)共同作用的结果。我们分析了土壤环境变异性的多尺度空间成分在构建哥伦比亚“亚诺斯”地区廊道森林中蚯蚓群落结构方面的作用。我们旨在厘清物种组合形成结构的空间尺度,并确定这些尺度是否与土壤环境变量所表现出的尺度相匹配。我们还通过探究根系相关变量与土壤养分及物理变量在构建蚯蚓群落结构中的空间关系,来检验“单树效应”假说。我们使用了多变量排序技术和空间明确工具,即交叉相关图、邻接矩阵主坐标(PCNM)和变异分解分析。
蚯蚓群落空间组织与土壤环境参数之间的关系明确显示出多尺度响应。在极细尺度(<10米)至中尺度(10 - 20米)下,解释蚯蚓和群落跨多空间尺度梯度嵌套种群结构的土壤环境变量有所不同。根系特征与0 - 5厘米深度处高土壤养分含量区域相关。通过变异函数建模获得了PCNM变量尺度的信息。根据样地大小,将PCNM变量任意分配到中尺度(>30米)、细尺度(10 - 20米)和极细尺度(<10米)。变异分解分析表明,土壤环境变异性解释了观察到的蚯蚓空间变异的不到1%至高达48%。
对于某些物种而言,很大一部分空间变异并不依赖于土壤环境变异性。这一发现可能表明存在传染性生物相互作用、随机因素或未测量的相关土壤环境变量的影响。