Legendre Pierre, Gallagher Eugene D
Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, H3C 3J7, Montréal, Québec, Canada.
Department of Environmental, Coastal & Ocean Sciences, University of Massachusetts at Boston, 02125, Boston, MA, USA.
Oecologia. 2001 Oct;129(2):271-280. doi: 10.1007/s004420100716. Epub 2001 Oct 1.
This paper examines how to obtain species biplots in unconstrained or constrained ordination without resorting to the Euclidean distance [used in principal-component analysis (PCA) and redundancy analysis (RDA)] or the chi-square distance [preserved in correspondence analysis (CA) and canonical correspondence analysis (CCA)] which are not always appropriate for the analysis of community composition data. To achieve this goal, transformations are proposed for species data tables. They allow ecologists to use ordination methods such as PCA and RDA, which are Euclidean-based, for the analysis of community data, while circumventing the problems associated with the Euclidean distance, and avoiding CA and CCA which present problems of their own in some cases. This allows the use of the original (transformed) species data in RDA carried out to test for relationships with explanatory variables (i.e. environmental variables, or factors of a multifactorial analysis-of-variance model); ecologists can then draw biplots displaying the relationships of the species to the explanatory variables. Another application allows the use of species data in other methods of multivariate data analysis which optimize a least-squares loss function; an example is K-means partitioning.
本文探讨了如何在无约束或有约束的排序分析中获得物种双序图,而无需借助欧几里得距离(用于主成分分析(PCA)和冗余分析(RDA))或卡方距离(对应分析(CA)和典范对应分析(CCA)中保留的距离),因为这些距离并不总是适合用于群落组成数据分析。为实现这一目标,本文提出了针对物种数据表的转换方法。这些转换方法使生态学家能够使用基于欧几里得距离的排序方法(如PCA和RDA)来分析群落数据,同时规避与欧几里得距离相关的问题,并避免使用在某些情况下存在自身问题的CA和CCA。这使得在进行RDA以检验与解释变量(即环境变量或多因素方差分析模型的因素)的关系时能够使用原始(转换后的)物种数据;生态学家随后可以绘制双序图来展示物种与解释变量之间的关系。另一个应用是在其他优化最小二乘损失函数的多元数据分析方法中使用物种数据;一个例子是K均值聚类。