Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Respiratory Division, Department of Medicine, School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil;
Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Respiratory Division, Department of Medicine, School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil; Laboratory of Clinical Exercise Physiology (LACEP), Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen's University, Kingston, Canada; and.
Am J Physiol Regul Integr Comp Physiol. 2015 Jan 15;308(2):R105-11. doi: 10.1152/ajpregu.00404.2014. Epub 2014 Dec 4.
Central cardiorespiratory and gas exchange limitations imposed by chronic obstructive pulmonary disease (COPD) impair ambulatory skeletal muscle oxygenation during whole body exercise. This investigation tested the hypothesis that peripheral factors per se contribute to impaired contracting lower limb muscle oxygenation in COPD patients. Submaximal neuromuscular electrical stimulation (NMES; 30, 40, and 50 mA at 50 Hz) of the quadriceps femoris was employed to evaluate contracting skeletal muscle oxygenation while minimizing the influence of COPD-related central cardiorespiratory constraints. Fractional O₂ extraction was estimated by near-infrared spectroscopy (deoxyhemoglobin/myoglobin concentration; deoxy-[Hb/Mb]), and torque output was measured by isokinetic dynamometry in 15 nonhypoxemic patients with moderate-to-severe COPD (SpO2 = 94 ± 2%; FEV₁ = 46.4 ± 10.1%; GOLD II and III) and in 10 age- and gender-matched sedentary controls. COPD patients had lower leg muscle mass than controls (LMM = 8.0 ± 0.7 kg vs. 8.9 ± 1.0 kg, respectively; P < 0.05) and produced relatively lower absolute and LMM-normalized torque across the range of NMES intensities (P < 0.05 for all). Despite producing less torque, COPD patients had similar deoxy-[Hb/Mb] amplitudes at 30 and 40 mA (P > 0.05 for both) and higher deoxy-[Hb/Mb] amplitude at 50 mA (P < 0.05). Further analysis indicated that COPD patients required greater fractional O₂ extraction to produce torque (i.e., ↑Δdeoxy-[Hb/Mb]/torque) relative to controls (P < 0.05 for 40 and 50 mA) and as a function of NMES intensity (P < 0.05 for all). The present data obtained during submaximal NMES of small muscle mass indicate that peripheral abnormalities contribute mechanistically to impaired contracting skeletal muscle oxygenation in nonhypoxemic, moderate-to-severe COPD patients.
慢性阻塞性肺疾病(COPD)导致的心肺中枢和气体交换受限会在全身运动期间损害活动肢体骨骼肌的氧合作用。本研究旨在验证一个假设,即外周因素本身会导致 COPD 患者在运动过程中收缩的下肢肌肉氧合作用受损。采用亚最大强度神经肌肉电刺激(NMES;50 Hz 时 30、40 和 50 mA)评估收缩骨骼肌氧合作用,同时最大限度地减少与 COPD 相关的中枢心肺限制的影响。通过近红外光谱(去氧血红蛋白/肌红蛋白浓度;去氧-[Hb/Mb])估计氧摄取分数,通过等速测力计测量扭矩输出,在 15 名非低氧血症的中重度 COPD 患者(SpO₂=94±2%;FEV₁=46.4±10.1%;GOLD II 和 III 期)和 10 名年龄和性别匹配的久坐对照者中进行。COPD 患者的小腿肌肉量低于对照组(LMM=8.0±0.7 kg 与 8.9±1.0 kg,分别;P<0.05),在 NMES 强度范围内产生的绝对和 LMM 归一化扭矩相对较低(所有 P<0.05)。尽管产生的扭矩较小,但 COPD 患者在 30 和 40 mA 时的去氧-[Hb/Mb]幅度相似(两者 P>0.05),在 50 mA 时的去氧-[Hb/Mb]幅度更高(P<0.05)。进一步分析表明,与对照组相比(40 和 50 mA 时 P<0.05),COPD 患者需要更大的氧摄取分数来产生扭矩(即↑Δ去氧-[Hb/Mb]/扭矩),且与 NMES 强度呈函数关系(所有 P<0.05)。本研究在小肌肉量的亚最大 NMES 期间获得的数据表明,外周异常在机制上导致非低氧血症的中重度 COPD 患者收缩骨骼肌氧合作用受损。