Suppr超能文献

光滑念珠菌的超氧化物歧化酶可抵御氧化损伤,是赖氨酸生物合成、DNA完整性和时序寿命存活所必需的。

The superoxide dismutases of Candida glabrata protect against oxidative damage and are required for lysine biosynthesis, DNA integrity and chronological life survival.

作者信息

Briones-Martin-Del-Campo Marcela, Orta-Zavalza Emmanuel, Cañas-Villamar Israel, Gutiérrez-Escobedo Guadalupe, Juárez-Cepeda Jacqueline, Robledo-Márquez Karina, Arroyo-Helguera Omar, Castaño Irene, De Las Peñas Alejandro

机构信息

IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, no. 2055, Col. Lomas 4a Sección, San Luis Potosí, San Luis Potosí 78216, Mexico.

出版信息

Microbiology (Reading). 2015 Feb;161(Pt 2):300-310. doi: 10.1099/mic.0.000006. Epub 2014 Dec 5.

Abstract

The fungal pathogen Candida glabrata has a well-defined oxidative stress response, is extremely resistant to oxidative stress and can survive inside phagocytic cells. In order to further our understanding of the oxidative stress response in C. glabrata, we characterized the superoxide dismutases (SODs) Cu,ZnSOD (Sod1) and MnSOD (Sod2). We found that Sod1 is the major contributor to total SOD activity and is present in cytoplasm, whereas Sod2 is a mitochondrial protein. Both SODs played a central role in the oxidative stress response but Sod1 was more important during fermentative growth and Sod2 during respiration and growth in non-fermentable carbon sources. Interestingly, C. glabrata cells lacking both SODs showed auxotrophy for lysine, a high rate of spontaneous mutation and reduced chronological lifespan. Thus, our study reveals that SODs play an important role in metabolism, lysine biosynthesis, DNA protection and aging in C. glabrata.

摘要

真菌病原体光滑念珠菌具有明确的氧化应激反应,对氧化应激具有极强的抵抗力,并且能够在吞噬细胞内存活。为了进一步了解光滑念珠菌的氧化应激反应,我们对超氧化物歧化酶(SOD)铜锌超氧化物歧化酶(Sod1)和锰超氧化物歧化酶(Sod2)进行了表征。我们发现,Sod1是总SOD活性的主要贡献者,存在于细胞质中,而Sod2是一种线粒体蛋白。两种SOD在氧化应激反应中都起着核心作用,但Sod1在发酵生长过程中更重要,而Sod2在呼吸作用以及在不可发酵碳源中的生长过程中更重要。有趣的是,缺乏这两种SOD的光滑念珠菌细胞表现出赖氨酸营养缺陷、自发突变率高以及时序寿命缩短。因此,我们的研究表明,SOD在光滑念珠菌的代谢、赖氨酸生物合成、DNA保护和衰老过程中发挥着重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验