Suppr超能文献

在近似贝叶斯计算框架中使用短读长基因组数据进行人口统计学推断:对大西洋海象的功效、偏差及概念验证的计算机模拟评估

Demographic inferences using short-read genomic data in an approximate Bayesian computation framework: in silico evaluation of power, biases and proof of concept in Atlantic walrus.

作者信息

Shafer Aaron B A, Gattepaille Lucie M, Stewart Robert E A, Wolf Jochen B W

机构信息

Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala, SE-75236, Sweden.

出版信息

Mol Ecol. 2015 Jan;24(2):328-45. doi: 10.1111/mec.13034. Epub 2015 Jan 10.

Abstract

Approximate Bayesian computation (ABC) is a powerful tool for model-based inference of demographic histories from large genetic data sets. For most organisms, its implementation has been hampered by the lack of sufficient genetic data. Genotyping-by-sequencing (GBS) provides cheap genome-scale data to fill this gap, but its potential has not fully been exploited. Here, we explored power, precision and biases of a coalescent-based ABC approach where GBS data were modelled with either a population mutation parameter (θ) or a fixed site (FS) approach, allowing single or several segregating sites per locus. With simulated data ranging from 500 to 50 000 loci, a variety of demographic models could be reliably inferred across a range of timescales and migration scenarios. Posterior estimates were informative with 1000 loci for migration and split time in simple population divergence models. In more complex models, posterior distributions were wide and almost reverted to the uninformative prior even with 50 000 loci. ABC parameter estimates, however, were generally more accurate than an alternative composite-likelihood method. Bottleneck scenarios proved particularly difficult, and only recent bottlenecks without recovery could be reliably detected and dated. Notably, minor-allele-frequency filters - usual practice for GBS data - negatively affected nearly all estimates. With this in mind, we used a combination of FS and θ approaches on empirical GBS data generated from the Atlantic walrus (Odobenus rosmarus rosmarus), collectively providing support for a population split before the last glacial maximum followed by asymmetrical migration and a high Arctic bottleneck. Overall, this study evaluates the potential and limitations of GBS data in an ABC-coalescence framework and proposes a best-practice approach.

摘要

近似贝叶斯计算(ABC)是一种用于从大型遗传数据集中对种群历史进行基于模型推断的强大工具。对于大多数生物而言,由于缺乏足够的遗传数据,其应用受到了阻碍。简化基因组测序(GBS)提供了廉价的基因组规模数据来填补这一空白,但其潜力尚未得到充分利用。在此,我们探讨了一种基于溯祖理论的ABC方法的效能、精度和偏差,该方法中GBS数据采用种群突变参数(θ)或固定位点(FS)方法进行建模,允许每个基因座有单个或多个分离位点。利用从500到50000个基因座的模拟数据,在一系列时间尺度和迁移情景下,可以可靠地推断出各种种群模型。在简单种群分化模型中,对于迁移和分裂时间,1000个基因座的后验估计就具有信息量。在更复杂的模型中,即使有50000个基因座,后验分布仍然很宽,几乎退回到无信息先验。然而,ABC参数估计通常比另一种复合似然方法更准确。瓶颈情景被证明特别困难,只有最近没有恢复的瓶颈才能被可靠地检测和定年。值得注意的是,次要等位基因频率过滤——GBS数据的常规做法——几乎对所有估计都产生了负面影响。考虑到这一点,我们在从大西洋海象(Odobenus rosmarus rosmarus)生成的经验GBS数据上结合使用了FS和θ方法,共同为末次盛冰期之前的种群分裂提供了支持,随后是不对称迁移和一次北极地区的瓶颈事件。总体而言,本研究评估了GBS数据在ABC - 溯祖框架中的潜力和局限性,并提出了一种最佳实践方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验