Suppr超能文献

基于伯恩斯坦多项式的非线性分数阶布鲁塞尔振子系统的数值解

Numerical solutions of the nonlinear fractional-order brusselator system by Bernstein polynomials.

作者信息

Khan Hasib, Jafari Hossein, Khan Rahmat Ali, Tajadodi Haleh, Johnston Sarah Jane

机构信息

Department of Mathematics, University of Malakand, Dir Lower, Khyber Pakhtunkhwa 18000, Pakistan ; Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa 18000, Pakistan.

Department of Mathematical Sciences, University of South Africa, P.O. Box 392, UNISA 0003, South Africa.

出版信息

ScientificWorldJournal. 2014;2014:257484. doi: 10.1155/2014/257484. Epub 2014 Nov 17.

Abstract

In this paper we propose the Bernstein polynomials to achieve the numerical solutions of nonlinear fractional-order chaotic system known by fractional-order Brusselator system. We use operational matrices of fractional integration and multiplication of Bernstein polynomials, which turns the nonlinear fractional-order Brusselator system to a system of algebraic equations. Two illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques.

摘要

在本文中,我们提出使用伯恩斯坦多项式来获得分数阶布鲁塞尔振子系统这种非线性分数阶混沌系统的数值解。我们利用伯恩斯坦多项式的分数阶积分和乘法运算矩阵,将非线性分数阶布鲁塞尔振子系统转化为一个代数方程组。给出了两个示例以证明所提技术的准确性和简便性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e5/4251784/bf74779e5455/TSWJ2014-257484.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验