Vogl Wolf-Dieter, Prosch Helmut, Müller-Mang Christina, Schmidt-Erfurth Ursula, Langs Georg
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):97-104. doi: 10.1007/978-3-319-10470-6_13.
Generating disease progression models from longitudinal medical imaging data is a challenging task due to the varying and often unknown state and speed of disease progression at the time of data acquisition, the limited number of scans and varying scanning intervals. We propose a method for temporally aligning imaging data from multiple patients driven by disease appearance. It aligns follow- up series of different patients in time, and creates a cross-sectional spatio-temporal disease pattern distribution model. Similarities in the disease distribution guide an optimization process, regularized by temporal rigidity and disease volume terms. We demonstrate the benefit of longitudinal alignment by classifying instances of different fibrosing interstitial lung diseases. Classification results (AUC) of Usual Interstitial Pneumonia (UIP) versus non-UIP improve from AUC = 0.71 to 0.78 following alignment, classification of UIP vs. Extrinsic Allergic Alveolitis (EAA) improves from 0.78 to 0.88.
从纵向医学影像数据生成疾病进展模型是一项具有挑战性的任务,这是因为在数据采集时疾病进展的状态和速度各不相同且往往未知,扫描次数有限且扫描间隔也不一致。我们提出了一种由疾病表现驱动的、用于对来自多个患者的影像数据进行时间对齐的方法。它能在时间上对齐不同患者的随访序列,并创建一个横断面时空疾病模式分布模型。疾病分布中的相似性引导着一个由时间刚性和疾病体积项正则化的优化过程。我们通过对不同纤维化间质性肺疾病的实例进行分类来证明纵向对齐的益处。对齐后,寻常型间质性肺炎(UIP)与非UIP的分类结果(AUC)从AUC = 0.71提高到了0.78,UIP与外源性过敏性肺泡炎(EAA)的分类从0.78提高到了0.88。