Suppr超能文献

一种基于推土机距离的用于追踪黄色粘球菌的匹配模型。

A matching model based on earth mover's distance for tracking Myxococcus xanthus.

作者信息

Chen Jianxu, Harvey Cameron W, Alber Mark S, Chen Danny Z

出版信息

Med Image Comput Comput Assist Interv. 2014;17(Pt 2):113-20. doi: 10.1007/978-3-319-10470-6_15.

Abstract

Tracking the motion of Myxococcus xanthus is a crucial step for fundamental bacteria studies. Large number of bacterial cells involved, limited image resolution, and various cell behaviors (e.g., division) make tracking a highly challenging problem. A common strategy is to segment the cells first and associate detected cells into moving trajectories. However, known detection association algorithms that run in polynomial time are either ineffective to deal with particular cell behaviors or sensitive to segmentation errors. In this paper, we propose a polynomial time hierarchical approach for associating segmented cells, using a new Earth Mover's Distance (EMD) based matching model. Our method is able to track cell motion when cells may divide, leave/enter the image window, and the segmentation results may incur false alarm, detection lost, and falsely merged/split detections. We demonstrate it on tracking M. xanthus. Applied to error-prone segmented cells, our algorithm exhibits higher track purity and produces more complete trajectories, comparing to several state-of-the-art detection association algorithms.

摘要

追踪黄色粘球菌的运动是基础细菌研究的关键步骤。由于涉及大量细菌细胞、图像分辨率有限以及各种细胞行为(如分裂),追踪成为一个极具挑战性的问题。一种常见策略是首先分割细胞,然后将检测到的细胞关联成移动轨迹。然而,已知的在多项式时间内运行的检测关联算法要么在处理特定细胞行为时无效,要么对分割错误敏感。在本文中,我们提出了一种多项式时间分层方法,用于关联分割后的细胞,使用一种基于新的推土机距离(EMD)的匹配模型。当细胞可能分裂、离开/进入图像窗口,并且分割结果可能产生误报、检测丢失以及错误合并/分割检测时,我们的方法能够追踪细胞运动。我们在追踪黄色粘球菌时进行了演示。与几种最先进的检测关联算法相比,应用于容易出错的分割细胞时,我们的算法展现出更高的追踪纯度,并产生更完整的轨迹。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验