Suppr超能文献

方向反转使黄色黏球菌细胞在子实体形成过程中产生集体一维流。

Directional reversals enable Myxococcus xanthus cells to produce collective one-dimensional streams during fruiting-body formation.

作者信息

Thutupalli Shashi, Sun Mingzhai, Bunyak Filiz, Palaniappan Kannappan, Shaevitz Joshua W

机构信息

Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.

出版信息

J R Soc Interface. 2015 Aug 6;12(109):20150049. doi: 10.1098/rsif.2015.0049.

Abstract

The formation of a collectively moving group benefits individuals within a population in a variety of ways. The surface-dwelling bacterium Myxococcus xanthus forms dynamic collective groups both to feed on prey and to aggregate during times of starvation. The latter behaviour, termed fruiting-body formation, involves a complex, coordinated series of density changes that ultimately lead to three-dimensional aggregates comprising hundreds of thousands of cells and spores. How a loose, two-dimensional sheet of motile cells produces a fixed aggregate has remained a mystery as current models of aggregation are either inconsistent with experimental data or ultimately predict unstable structures that do not remain fixed in space. Here, we use high-resolution microscopy and computer vision software to spatio-temporally track the motion of thousands of individuals during the initial stages of fruiting-body formation. We find that cells undergo a phase transition from exploratory flocking, in which unstable cell groups move rapidly and coherently over long distances, to a reversal-mediated localization into one-dimensional growing streams that are inherently stable in space. These observations identify a new phase of active collective behaviour and answer a long-standing open question in Myxococcus development by describing how motile cell groups can remain statistically fixed in a spatial location.

摘要

形成一个集体移动的群体以多种方式使种群中的个体受益。地表栖息细菌黄色粘球菌形成动态的集体群体,既用于捕食猎物,也用于在饥饿时期聚集。后一种行为,即子实体形成,涉及一系列复杂、协调的密度变化,最终导致由数十万细胞和孢子组成的三维聚集体。一个松散的二维运动细胞片如何产生一个固定的聚集体仍然是一个谜,因为目前的聚集模型要么与实验数据不一致,要么最终预测出在空间中无法保持固定的不稳定结构。在这里,我们使用高分辨率显微镜和计算机视觉软件在子实体形成的初始阶段对数千个个体的运动进行时空跟踪。我们发现细胞经历了一个从探索性聚集的阶段转变,在这个阶段中,不稳定的细胞群在长距离上快速且连贯地移动,到通过反转介导定位到在空间中固有稳定的一维生长流中。这些观察结果确定了一种新的主动集体行为阶段,并通过描述运动细胞群如何在空间位置上保持统计上的固定,回答了黄色粘球菌发育中一个长期存在的开放性问题。

相似文献

2
Multicellular development in Myxococcus xanthus is stimulated by predator-prey interactions.
J Bacteriol. 2007 Aug;189(15):5675-82. doi: 10.1128/JB.00544-07. Epub 2007 May 18.
3
Aggregation during fruiting body formation in Myxococcus xanthus is driven by reducing cell movement.
J Bacteriol. 2007 Jan;189(2):611-9. doi: 10.1128/JB.01206-06. Epub 2006 Nov 10.
4
Self-Driven Phase Transitions Drive Myxococcus xanthus Fruiting Body Formation.
Phys Rev Lett. 2019 Jun 21;122(24):248102. doi: 10.1103/PhysRevLett.122.248102.
5
A three-dimensional model of myxobacterial fruiting-body formation.
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17255-9. doi: 10.1073/pnas.0605555103. Epub 2006 Nov 6.
6
Spatial organization of Myxococcus xanthus during fruiting body formation.
J Bacteriol. 2007 Dec;189(24):9126-30. doi: 10.1128/JB.01008-07. Epub 2007 Oct 5.
7
Role of phase variation in the resistance of Myxococcus xanthus fruiting bodies to Caenorhabditis elegans predation.
J Bacteriol. 2011 Oct;193(19):5081-9. doi: 10.1128/JB.05383-11. Epub 2011 Aug 5.
8
Spatial simulations of myxobacterial development.
PLoS Comput Biol. 2010 Feb 26;6(2):e1000686. doi: 10.1371/journal.pcbi.1000686.
9
Two cell-density domains within the Myxococcus xanthus fruiting body.
Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3690-4. doi: 10.1073/pnas.90.8.3690.
10
The enhancer binding protein Nla6 regulates developmental genes that are important for Myxococcus xanthus sporulation.
J Bacteriol. 2015 Apr;197(7):1276-87. doi: 10.1128/JB.02408-14. Epub 2015 Feb 2.

引用本文的文献

1
Capillary interactions drive the self-organization of bacterial colonies.
Nat Phys. 2025 Jul 28. doi: 10.1038/s41567-025-02965-y.
2
Genetic and environmental determinants of streaming and aggregation in Myxococcus xanthus.
Sci Rep. 2025 Aug 21;15(1):30673. doi: 10.1038/s41598-025-15915-8.
3
Ensemble Deep Learning Object Detection Fusion for Cell Tracking, Mitosis, and Lineage.
IEEE Open J Eng Med Biol. 2023 Jun 21;5:443-458. doi: 10.1109/OJEMB.2023.3288470. eCollection 2024.
5
Unravelling a diversity of cellular structures and aggregation dynamics during the early development of .
Biol Lett. 2024 Oct;20(10):20240360. doi: 10.1098/rsbl.2024.0360. Epub 2024 Oct 23.
6
A Cellular Potts Model of the interplay of synchronization and aggregation.
PeerJ. 2024 Feb 29;12:e16974. doi: 10.7717/peerj.16974. eCollection 2024.
7
Mathematical modeling of mechanosensitive reversal control in .
Front Microbiol. 2024 Jan 8;14:1294631. doi: 10.3389/fmicb.2023.1294631. eCollection 2023.
8
Molecular-scale substrate anisotropy, crowding and division drive collective behaviours in cell monolayers.
J R Soc Interface. 2023 Jul;20(204):20230160. doi: 10.1098/rsif.2023.0160. Epub 2023 Jul 5.
9
Cell density, alignment, and orientation correlate with C-signal-dependent gene expression during development.
Proc Natl Acad Sci U S A. 2021 Nov 9;118(45). doi: 10.1073/pnas.2111706118.
10
The environment topography alters the way to multicellularity in .
Sci Adv. 2021 Aug 25;7(35). doi: 10.1126/sciadv.abh2278. Print 2021 Aug.

本文引用的文献

1
A matching model based on earth mover's distance for tracking Myxococcus xanthus.
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):113-20. doi: 10.1007/978-3-319-10470-6_15.
2
Live soap: stability, order, and fluctuations in apolar active smectics.
Phys Rev Lett. 2013 Mar 15;110(11):118102. doi: 10.1103/PhysRevLett.110.118102.
3
Transmission of a signal that synchronizes cell movements in swarms of Myxococcus xanthus.
Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13105-10. doi: 10.1073/pnas.1411925111. Epub 2014 Aug 22.
4
Objective comparison of particle tracking methods.
Nat Methods. 2014 Mar;11(3):281-9. doi: 10.1038/nmeth.2808. Epub 2014 Jan 19.
5
Pattern-formation mechanisms in motility mutants of Myxococcus xanthus.
Interface Focus. 2012 Dec 6;2(6):774-85. doi: 10.1098/rsfs.2012.0034. Epub 2012 Oct 3.
6
Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms.
Nature. 2013 May 16;497(7449):388-391. doi: 10.1038/nature12155. Epub 2013 May 8.
7
Emergent sensing of complex environments by mobile animal groups.
Science. 2013 Feb 1;339(6119):574-6. doi: 10.1126/science.1225883.
8
Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility.
J Cell Biol. 2012 Oct 29;199(3):545-63. doi: 10.1083/jcb.201207148. Epub 2012 Oct 22.
9
Cell contact-dependent outer membrane exchange in myxobacteria: genetic determinants and mechanism.
PLoS Genet. 2012;8(4):e1002626. doi: 10.1371/journal.pgen.1002626. Epub 2012 Apr 12.
10
Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria.
Phys Rev Lett. 2012 Mar 2;108(9):098102. doi: 10.1103/PhysRevLett.108.098102. Epub 2012 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验