Thutupalli Shashi, Sun Mingzhai, Bunyak Filiz, Palaniappan Kannappan, Shaevitz Joshua W
Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
J R Soc Interface. 2015 Aug 6;12(109):20150049. doi: 10.1098/rsif.2015.0049.
The formation of a collectively moving group benefits individuals within a population in a variety of ways. The surface-dwelling bacterium Myxococcus xanthus forms dynamic collective groups both to feed on prey and to aggregate during times of starvation. The latter behaviour, termed fruiting-body formation, involves a complex, coordinated series of density changes that ultimately lead to three-dimensional aggregates comprising hundreds of thousands of cells and spores. How a loose, two-dimensional sheet of motile cells produces a fixed aggregate has remained a mystery as current models of aggregation are either inconsistent with experimental data or ultimately predict unstable structures that do not remain fixed in space. Here, we use high-resolution microscopy and computer vision software to spatio-temporally track the motion of thousands of individuals during the initial stages of fruiting-body formation. We find that cells undergo a phase transition from exploratory flocking, in which unstable cell groups move rapidly and coherently over long distances, to a reversal-mediated localization into one-dimensional growing streams that are inherently stable in space. These observations identify a new phase of active collective behaviour and answer a long-standing open question in Myxococcus development by describing how motile cell groups can remain statistically fixed in a spatial location.
形成一个集体移动的群体以多种方式使种群中的个体受益。地表栖息细菌黄色粘球菌形成动态的集体群体,既用于捕食猎物,也用于在饥饿时期聚集。后一种行为,即子实体形成,涉及一系列复杂、协调的密度变化,最终导致由数十万细胞和孢子组成的三维聚集体。一个松散的二维运动细胞片如何产生一个固定的聚集体仍然是一个谜,因为目前的聚集模型要么与实验数据不一致,要么最终预测出在空间中无法保持固定的不稳定结构。在这里,我们使用高分辨率显微镜和计算机视觉软件在子实体形成的初始阶段对数千个个体的运动进行时空跟踪。我们发现细胞经历了一个从探索性聚集的阶段转变,在这个阶段中,不稳定的细胞群在长距离上快速且连贯地移动,到通过反转介导定位到在空间中固有稳定的一维生长流中。这些观察结果确定了一种新的主动集体行为阶段,并通过描述运动细胞群如何在空间位置上保持统计上的固定,回答了黄色粘球菌发育中一个长期存在的开放性问题。