Suppr超能文献

使用4D统计模型从高维胸部表面运动估计动态肺部图像。

Estimating dynamic lung images from high-dimension chest surface motion using 4D statistical model.

作者信息

He Tiancheng, Xue Zhong, Yu Nam, Nitsch Paige L, Teh Bin S, Wong Stephen T

出版信息

Med Image Comput Comput Assist Interv. 2014;17(Pt 2):138-45. doi: 10.1007/978-3-319-10470-6_18.

Abstract

Computed Tomography (CT) has been widely used in image-guided procedures such as intervention and radiotherapy of lung cancer. However, due to poor reproducibility of breath holding or respiratory cycles, discrepancies between static images and patient's current lung shape and tumor location could potentially reduce the accuracy for image guidance. Current methods are either using multiple intra-procedural scans or monitoring respiratory motion with tracking sensors. Although intra-procedural scanning provides more accurate information, it increases the radiation dose and still only provides snapshots of patient's chest. Tracking-based breath monitoring techniques can effectively detect respiratory phases but have not yet provided accurate tumor shape and location due to low dimensional signals. Therefore, estimating the lung motion and generating dynamic CT images from real-time captured high-dimensional sensor signals acts as a key component for image-guided procedures. This paper applies a principal component analysis (PCA)-based statistical model to establish the relationship between lung motion and chest surface motion from training samples, on a template space, and then uses this model to estimate dynamic images for a new patient from the chest surface motion. Qualitative and quantitative results showed that the proposed high-dimensional estimation algorithm yielded more accurate 4D-CT compared to fiducial marker-based estimation.

摘要

计算机断层扫描(CT)已广泛应用于肺癌介入和放射治疗等图像引导手术中。然而,由于屏气或呼吸周期的可重复性较差,静态图像与患者当前肺部形状和肿瘤位置之间的差异可能会降低图像引导的准确性。目前的方法要么是在手术过程中进行多次扫描,要么是使用跟踪传感器监测呼吸运动。虽然术中扫描能提供更准确的信息,但它会增加辐射剂量,而且仍然只能提供患者胸部的快照。基于跟踪的呼吸监测技术可以有效地检测呼吸阶段,但由于信号维度较低,尚未能提供准确的肿瘤形状和位置。因此,从实时捕获的高维传感器信号中估计肺部运动并生成动态CT图像是图像引导手术的关键组成部分。本文应用基于主成分分析(PCA)的统计模型,在模板空间上从训练样本中建立肺部运动与胸壁表面运动之间的关系,然后使用该模型根据胸壁表面运动为新患者估计动态图像。定性和定量结果表明,与基于基准标记的估计相比,所提出的高维估计算法能产生更准确的四维CT。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验