Suppr超能文献

体内起始核糖体的定量分析。

Quantitative profiling of initiating ribosomes in vivo.

作者信息

Gao Xiangwei, Wan Ji, Liu Botao, Ma Ming, Shen Ben, Qian Shu-Bing

机构信息

Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.

Graduate Field of Genetics, Genomics &Development, Cornell University, Ithaca, New York, USA.

出版信息

Nat Methods. 2015 Feb;12(2):147-53. doi: 10.1038/nmeth.3208. Epub 2014 Dec 8.

Abstract

Cells have evolved exquisite mechanisms to fine-tune the rate of protein synthesis in response to stress. Systemic mapping of start-codon positions and precise measurement of the corresponding initiation rate would transform our understanding of translational control. Here we present quantitative translation initiation sequencing (QTI-seq), with which the initiating ribosomes can be profiled in real time at single-nucleotide resolution. Resultant initiation maps not only delineated variations of start-codon selection but also highlighted a dynamic range of initiation rates in response to nutrient starvation. The integrated data set provided unique insights into principles of alternative translation and mechanisms controlling different aspects of translation initiation. With RiboTag mice, QTI-seq permitted tissue-specific profiling of initiating ribosomes in vivo. Liver cell-specific ribosome profiling uncovered a robust translational reprogramming of the proteasome system in fasted mice. Our findings illuminated the prevalence and dynamic nature of translational regulation pivotal to physiological adaptation in vivo.

摘要

细胞已经进化出精妙的机制来根据应激微调蛋白质合成的速率。起始密码子位置的系统图谱绘制以及相应起始速率的精确测量将改变我们对翻译控制的理解。在此,我们展示了定量翻译起始测序(QTI-seq),利用该技术可以在单核苷酸分辨率下实时分析起始核糖体。所得的起始图谱不仅描绘了起始密码子选择的变化,还突出了响应营养饥饿时起始速率的动态范围。整合的数据集为选择性翻译的原理以及控制翻译起始不同方面的机制提供了独特的见解。利用RiboTag小鼠,QTI-seq能够在体内对起始核糖体进行组织特异性分析。肝细胞特异性核糖体分析揭示了禁食小鼠中蛋白酶体系统强大的翻译重编程。我们的发现阐明了体内生理适应关键的翻译调控的普遍性和动态特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/976a/4344187/2e6a33b39fbb/nihms642756f1.jpg

相似文献

1
Quantitative profiling of initiating ribosomes in vivo.
Nat Methods. 2015 Feb;12(2):147-53. doi: 10.1038/nmeth.3208. Epub 2014 Dec 8.
2
Genome-Wide Profiling of Alternative Translation Initiation Sites.
Methods Mol Biol. 2016;1358:303-16. doi: 10.1007/978-1-4939-3067-8_19.
3
N-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response.
Mol Cell. 2018 Feb 15;69(4):636-647.e7. doi: 10.1016/j.molcel.2018.01.019. Epub 2018 Feb 8.
4
Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution.
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):E2424-32. doi: 10.1073/pnas.1207846109. Epub 2012 Aug 27.
7
Insights into the mechanisms of eukaryotic translation gained with ribosome profiling.
Nucleic Acids Res. 2017 Jan 25;45(2):513-526. doi: 10.1093/nar/gkw1190. Epub 2016 Dec 6.
9
Analysis of the In Vivo Translation Process in Trypanosoma cruzi Using Ribosome Profiling.
Methods Mol Biol. 2020;2116:117-123. doi: 10.1007/978-1-0716-0294-2_9.
10
Ribosome profiling of the retrovirus murine leukemia virus.
Retrovirology. 2018 Jan 22;15(1):10. doi: 10.1186/s12977-018-0394-5.

引用本文的文献

1
Ribo-ITP expands the translatome of limited input samples.
bioRxiv. 2025 Aug 4:2025.08.04.668486. doi: 10.1101/2025.08.04.668486.
2
Eukaryotic Microproteins.
Annu Rev Biochem. 2025 Jun;94(1):1-28. doi: 10.1146/annurev-biochem-080124-012840. Epub 2025 Apr 17.
4
Transcriptome-wide mapping of N3-methylcytidine modification at single-base resolution.
Nucleic Acids Res. 2025 Feb 27;53(5). doi: 10.1093/nar/gkaf153.
5
Maintenance of p-eIF2α levels by the eIF2B complex is vital for colorectal cancer.
EMBO J. 2025 Apr;44(7):2075-2105. doi: 10.1038/s44318-025-00381-9. Epub 2025 Feb 27.
6
Unveiling conserved HIV-1 open reading frames encoding T cell antigens using ribosome profiling.
Nat Commun. 2025 Feb 18;16(1):1707. doi: 10.1038/s41467-025-56773-2.
7
Identification of Small Open Reading Frame-encoded Proteins in the Human Genome.
Genomics Proteomics Bioinformatics. 2025 May 10;23(1). doi: 10.1093/gpbjnl/qzaf004.
8
Principles, challenges, and advances in ribosome profiling: from bulk to low-input and single-cell analysis.
Adv Biotechnol (Singap). 2023 Dec 1;1(4):6. doi: 10.1007/s44307-023-00006-4.
9
Comprehensive discovery and functional characterization of the noncanonical proteome.
Cell Res. 2025 Mar;35(3):186-204. doi: 10.1038/s41422-024-01059-3. Epub 2025 Jan 10.
10
Alternative transcripts recode human genes to express overlapping, frameshifted microproteins.
bioRxiv. 2024 Oct 25:2024.10.22.619581. doi: 10.1101/2024.10.22.619581.

本文引用的文献

1
Ribosome profiling: new views of translation, from single codons to genome scale.
Nat Rev Genet. 2014 Mar;15(3):205-13. doi: 10.1038/nrg3645. Epub 2014 Jan 28.
2
Translational reprogramming in cellular stress response.
Wiley Interdiscip Rev RNA. 2014 May-Jun;5(3):301-15. doi: 10.1002/wrna.1212. Epub 2013 Dec 23.
3
Rate-limiting steps in yeast protein translation.
Cell. 2013 Jun 20;153(7):1589-601. doi: 10.1016/j.cell.2013.05.049.
4
Pharmacological brake-release of mRNA translation enhances cognitive memory.
Elife. 2013 May 28;2:e00498. doi: 10.7554/eLife.00498.
5
Cotranslational response to proteotoxic stress by elongation pausing of ribosomes.
Mol Cell. 2013 Feb 7;49(3):453-63. doi: 10.1016/j.molcel.2012.12.001. Epub 2013 Jan 3.
6
A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis.
Brief Bioinform. 2013 Nov;14(6):671-83. doi: 10.1093/bib/bbs046. Epub 2012 Sep 17.
7
Failure of amino acid homeostasis causes cell death following proteasome inhibition.
Mol Cell. 2012 Oct 26;48(2):242-53. doi: 10.1016/j.molcel.2012.08.003. Epub 2012 Sep 6.
8
Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution.
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):E2424-32. doi: 10.1073/pnas.1207846109. Epub 2012 Aug 27.
9
Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting.
Genome Res. 2012 Nov;22(11):2208-18. doi: 10.1101/gr.139568.112. Epub 2012 Aug 9.
10
A mechanistic overview of translation initiation in eukaryotes.
Nat Struct Mol Biol. 2012 Jun 5;19(6):568-76. doi: 10.1038/nsmb.2303.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验