Castonguay Emilie, White Sharon A, Kagansky Alexander, St-Cyr Daniel J, Castillo Araceli G, Brugger Christiane, White Rachel, Bonilla Carolina, Spitzer Michaela, Earnshaw William C, Schalch Thomas, Ekwall Karl, Tyers Mike, Allshire Robin C
Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, United Kingdom.
Mol Cell Biol. 2015 Feb;35(4):662-74. doi: 10.1128/MCB.01102-14. Epub 2014 Dec 8.
Heterochromatin underpins gene repression, genome integrity, and chromosome segregation. In the fission yeast Schizosaccharomyces pombe, conserved protein complexes effect heterochromatin formation via RNA interference-mediated recruitment of a histone H3 lysine 9 methyltransferase to cognate chromatin regions. To identify small molecules that inhibit heterochromatin formation, we performed an in vivo screen for loss of silencing of a dominant selectable kanMX reporter gene embedded within fission yeast centromeric heterochromatin. Two structurally unrelated compounds, HMS-I1 and HMS-I2, alleviated kanMX silencing and decreased repressive H3K9 methylation levels at the transgene. The decrease in methylation caused by HMS-I1 and HMS-I2 was observed at all loci regulated by histone methylation, including centromeric repeats, telomeric regions, and the mating-type locus, consistent with inhibition of the histone deacetylases (HDACs) Clr3 and/or Sir2. Chemical-genetic epistasis and expression profiles revealed that both compounds affect the activity of the Clr3-containing Snf2/HDAC repressor complex (SHREC). In vitro HDAC assays revealed that HMS-I1 and HMS-I2 inhibit Clr3 HDAC activity. HMS-I1 also alleviated transgene reporter silencing by heterochromatin in Arabidopsis and a mouse cell line, suggesting a conserved mechanism of action. HMS-I1 and HMS-I2 bear no resemblance to known inhibitors of chromatin-based activities and thus represent novel chemical probes for heterochromatin formation and function.
异染色质维持基因抑制、基因组完整性和染色体分离。在裂殖酵母粟酒裂殖酵母中,保守的蛋白质复合物通过RNA干扰介导的组蛋白H3赖氨酸9甲基转移酶募集到同源染色质区域来实现异染色质形成。为了鉴定抑制异染色质形成的小分子,我们对嵌入裂殖酵母着丝粒异染色质中的显性选择标记基因kanMX报告基因的沉默缺失进行了体内筛选。两种结构不相关的化合物HMS-I1和HMS-I2,减轻了kanMX的沉默,并降低了转基因处抑制性H3K9甲基化水平。在所有受组蛋白甲基化调控的位点,包括着丝粒重复序列、端粒区域和交配型位点,都观察到了由HMS-I1和HMS-I2引起的甲基化减少,这与组蛋白去乙酰化酶(HDACs)Clr3和/或Sir2的抑制作用一致。化学遗传上位性和表达谱显示,这两种化合物都影响含Clr3的Snf2/HDAC阻遏复合物(SHREC)的活性。体外HDAC分析表明,HMS-I1和HMS-I2抑制Clr3 HDAC活性。HMS-I1还减轻了拟南芥和小鼠细胞系中异染色质对转基因报告基因的沉默,提示了一种保守的作用机制。HMS-I1和HMS-I2与已知的基于染色质活性的抑制剂没有相似之处,因此代表了用于异染色质形成和功能研究的新型化学探针。