Suppr超能文献

基于磁共振成像的股骨近端微结构有限元分析在体内评估骨强度的测量可重复性。

Measurement reproducibility of magnetic resonance imaging-based finite element analysis of proximal femur microarchitecture for in vivo assessment of bone strength.

作者信息

Chang Gregory, Hotca-Cho Alexandra, Rusinek Henry, Honig Stephen, Mikheev Artem, Egol Kenneth, Regatte Ravinder R, Rajapakse Chamith S

机构信息

Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, 660 First Avenue, Room 334, 3rd Floor, New York, NY, 10016, USA,

出版信息

MAGMA. 2015 Aug;28(4):407-12. doi: 10.1007/s10334-014-0475-y. Epub 2014 Dec 9.

Abstract

INTRODUCTION

Osteoporosis is a disease of weak bone. Our goal was to determine the measurement reproducibility of magnetic resonance assessment of proximal femur strength.

METHODS

This study had institutional review board approval, and written informed consent was obtained from all subjects. We obtained images of proximal femur microarchitecture by scanning 12 subjects three times within 1 week at 3T using a high-resolution 3-D FLASH sequence. We applied finite element analysis to compute proximal femur stiffness and femoral neck elastic modulus.

RESULTS

Within-day and between-day root-mean-square coefficients of variation and intraclass correlation coefficients ranged from 3.5 to 6.6 % and 0.96 to 0.98, respectively.

CONCLUSION

The measurement reproducibility of magnetic resonance assessment of proximal femur strength is suitable for clinical studies of disease progression or treatment response related to osteoporosis bone-strengthening interventions.

摘要

引言

骨质疏松症是一种骨骼脆弱的疾病。我们的目标是确定磁共振评估股骨近端强度的测量可重复性。

方法

本研究获得了机构审查委员会的批准,并获得了所有受试者的书面知情同意书。我们使用高分辨率三维快速成像稳态进动序列,在3T条件下于1周内对12名受试者的股骨近端微结构进行了三次扫描,获取图像。我们应用有限元分析来计算股骨近端刚度和股骨颈弹性模量。

结果

日内和日间的均方根变异系数以及组内相关系数分别在3.5%至6.6%和0.96至0.98之间。

结论

磁共振评估股骨近端强度的测量可重复性适用于与骨质疏松症骨骼强化干预相关的疾病进展或治疗反应的临床研究。

相似文献

3
In vivo measurement reproducibility of femoral neck microarchitectural parameters derived from 3T MR images.
J Magn Reson Imaging. 2015 Nov;42(5):1339-45. doi: 10.1002/jmri.24892. Epub 2015 Mar 30.
5
Patient-specific Hip Fracture Strength Assessment with Microstructural MR Imaging-based Finite Element Modeling.
Radiology. 2017 Jun;283(3):854-861. doi: 10.1148/radiol.2016160874. Epub 2016 Dec 2.
6
Precision of volumetric assessment of proximal femur microarchitecture from high-resolution 3T MRI.
Int J Comput Assist Radiol Surg. 2015 Jan;10(1):35-43. doi: 10.1007/s11548-014-1009-9. Epub 2014 May 6.
8
Multi-level patient-specific modelling of the proximal femur. A promising tool to quantify the effect of osteoporosis treatment.
Philos Trans A Math Phys Eng Sci. 2009 May 28;367(1895):2079-93. doi: 10.1098/rsta.2008.0302.
9
New QCT analysis approach shows the importance of fall orientation on femoral neck strength.
J Bone Miner Res. 2005 Sep;20(9):1533-42. doi: 10.1359/JBMR.050510. Epub 2005 May 16.

引用本文的文献

2
The Application of Advanced Bone Imaging Technologies in Sports Medicine.
Radiol Res Pract. 2023 Dec 4;2023:7412540. doi: 10.1155/2023/7412540. eCollection 2023.
3
MRI-based mechanical competence assessment of bone using micro finite element analysis (micro-FEA): Review.
Magn Reson Imaging. 2022 May;88:9-19. doi: 10.1016/j.mri.2022.01.009. Epub 2022 Jan 25.
4
MRI-based assessment of proximal femur strength compared to mechanical testing.
Bone. 2020 Apr;133:115227. doi: 10.1016/j.bone.2020.115227. Epub 2020 Jan 9.
5
Influence of bone lesion location on femoral bone strength assessed by MRI-based finite-element modeling.
Bone. 2019 May;122:209-217. doi: 10.1016/j.bone.2019.03.005. Epub 2019 Mar 7.
6
Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks.
Sci Rep. 2018 Nov 7;8(1):16485. doi: 10.1038/s41598-018-34817-6.
7
Micro-Finite Element Analysis of the Proximal Femur on the Basis of High-Resolution Magnetic Resonance Images.
Curr Osteoporos Rep. 2018 Dec;16(6):657-664. doi: 10.1007/s11914-018-0481-5.
9
MRI assessment of bone structure and microarchitecture.
J Magn Reson Imaging. 2017 Aug;46(2):323-337. doi: 10.1002/jmri.25647. Epub 2017 Feb 6.

本文引用的文献

6
Generation of an atlas of the proximal femur and its application to trabecular bone analysis.
Magn Reson Med. 2011 Oct;66(4):1181-91. doi: 10.1002/mrm.22885. Epub 2011 Mar 22.
8
Is a change in bone mineral density a sensitive and specific surrogate of anti-fracture efficacy?
Bone. 2007 Sep;41(3):308-17. doi: 10.1016/j.bone.2007.06.010. Epub 2007 Jun 26.
9
Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging.
J Magn Reson Imaging. 2007 Feb;25(2):390-409. doi: 10.1002/jmri.20807.
10
Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025.
J Bone Miner Res. 2007 Mar;22(3):465-75. doi: 10.1359/jbmr.061113.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验