Suppr超能文献

生成股骨近端图谱及其在小梁骨分析中的应用。

Generation of an atlas of the proximal femur and its application to trabecular bone analysis.

机构信息

Grupo Tecnológico Santa Fe, SA de CV, Mexico City, Mexico.

出版信息

Magn Reson Med. 2011 Oct;66(4):1181-91. doi: 10.1002/mrm.22885. Epub 2011 Mar 22.

Abstract

Automatic placement of anatomically corresponding volumes of interest and comparison of parameters against a standard of reference are essential components in studies of trabecular bone. Only recently, in vivo MR images of the proximal femur, an important fracture site, could be acquired with high-spatial resolution. The purpose of this MRI trabecular bone study was two-fold: (1) to generate an atlas of the proximal femur to automatically place anatomically corresponding volumes of interest in a population study and (2) to demonstrate how mean models of geodesic topological analysis parameters can be generated to be used as potential standard of reference. Ten females were used to generate the atlas and geodesic topological analysis models, and 10 females were used to demonstrate the atlas-based trabecular bone analysis. All alignments were based on three-dimensional (3D) multiresolution affine transformations followed by 3D multiresolution free-form deformations. Mean distances less than 1 mm between aligned femora, and sharp edges in the atlas and in fused gray-level images of registered femora indicated that the anatomical variability was well accommodated and explained by the free-form deformations.

摘要

在研究小梁骨时,自动放置解剖学上对应的感兴趣区域并将参数与参考标准进行比较是必不可少的组成部分。直到最近,才能在高空间分辨率下获取重要骨折部位——股骨近端的活体 MR 图像。这项 MRI 小梁骨研究有两个目的:(1)生成股骨近端图谱,以便在人群研究中自动放置解剖学上对应的感兴趣区域;(2)演示如何生成测地线拓扑分析参数的均值模型,用作潜在的参考标准。使用 10 名女性生成图谱和测地线拓扑分析模型,并使用 10 名女性演示基于图谱的小梁骨分析。所有配准均基于三维(3D)多分辨率仿射变换,然后是 3D 多分辨率自由形态变形。对齐股骨之间的平均距离小于 1 毫米,图谱和注册股骨的融合灰度图像中的边缘锐利,表明自由形态变形很好地适应和解释了解剖学变异性。

相似文献

1
Generation of an atlas of the proximal femur and its application to trabecular bone analysis.
Magn Reson Med. 2011 Oct;66(4):1181-91. doi: 10.1002/mrm.22885. Epub 2011 Mar 22.
4
Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur.
Osteoporos Int. 2005 Nov;16(11):1307-14. doi: 10.1007/s00198-005-1907-3. Epub 2005 Jul 6.
6
8
Femur statistical atlas construction based on two-level 3D non-rigid registration.
Comput Aided Surg. 2009;14(4-6):83-99. doi: 10.3109/10929080903246543.
9
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.

引用本文的文献

2
Spatial Differences in the Distribution of Bone Between Femoral Neck and Trochanteric Fractures.
J Bone Miner Res. 2017 Aug;32(8):1672-1680. doi: 10.1002/jbmr.3150. Epub 2017 Jul 5.
3
MRI assessment of bone structure and microarchitecture.
J Magn Reson Imaging. 2017 Aug;46(2):323-337. doi: 10.1002/jmri.25647. Epub 2017 Feb 6.
5
Precision of volumetric assessment of proximal femur microarchitecture from high-resolution 3T MRI.
Int J Comput Assist Radiol Surg. 2015 Jan;10(1):35-43. doi: 10.1007/s11548-014-1009-9. Epub 2014 May 6.
7
Computational anatomy in the study of bone structure.
Curr Osteoporos Rep. 2013 Sep;11(3):237-45. doi: 10.1007/s11914-013-0148-1.
8
Trabecular bone structure analysis of the spine using clinical MDCT: can it predict vertebral bone strength?
J Bone Miner Metab. 2014 Jan;32(1):56-64. doi: 10.1007/s00774-013-0465-6. Epub 2013 Apr 20.

本文引用的文献

1
High-resolution imaging techniques for the assessment of osteoporosis.
Radiol Clin North Am. 2010 May;48(3):601-21. doi: 10.1016/j.rcl.2010.02.015.
2
Dual X-ray absorptiometry in today's clinical practice.
Radiol Clin North Am. 2010 May;48(3):541-60. doi: 10.1016/j.rcl.2010.02.019.
3
Anatomically corresponded regional analysis of cartilage in asymptomatic and osteoarthritic knees by statistical shape modelling of the bone.
IEEE Trans Med Imaging. 2010 Aug;29(8):1541-59. doi: 10.1109/TMI.2010.2047653. Epub 2010 Apr 8.
4
5
Automated 3D trabecular bone structure analysis of the proximal femur--prediction of biomechanical strength by CT and DXA.
Osteoporos Int. 2010 Sep;21(9):1553-64. doi: 10.1007/s00198-009-1090-z. Epub 2009 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验