Suppr超能文献

香烟烟雾诱导的聚集体形成在慢性阻塞性肺疾病-肺气肿发病机制中的作用

Role of Cigarette Smoke-Induced Aggresome Formation in Chronic Obstructive Pulmonary Disease-Emphysema Pathogenesis.

作者信息

Tran Ian, Ji Changhoon, Ni Inzer, Min Taehong, Tang Danni, Vij Neeraj

机构信息

Departments of 1 Pediatric Respiratory Science and.

2 Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, Maryland; and.

出版信息

Am J Respir Cell Mol Biol. 2015 Aug;53(2):159-73. doi: 10.1165/rcmb.2014-0107OC.

Abstract

Cigarette smoke (CS) exposure is known to induce proteostasis imbalance that can initiate accumulation of ubiquitinated proteins. Therefore, the primary goal of this study was to determine if first- and secondhand CS induces localization of ubiquitinated proteins in perinuclear spaces as aggresome bodies. Furthermore, we sought to determine the mechanism by which smoke-induced aggresome formation contributes to chronic obstructive pulmonary disease (COPD)-emphysema pathogenesis. Hence, Beas2b cells were treated with CS extract (CSE) for in vitro experimental analysis of CS-induced aggresome formation by immunoblotting, microscopy, and reporter assays, whereas chronic CS-exposed murine model and human COPD-emphysema lung tissues were used for validation. In preliminary analysis, we observed a significant (P < 0.01) increase in ubiquitinated protein aggregation in the insoluble protein fraction of CSE-treated Beas2b cells. We verified that CS-induced ubiquitin aggregrates are localized in the perinuclear spaces as aggresome bodies. These CS-induced aggresomes (P < 0.001) colocalize with autophagy protein microtubule-associated protein 1 light chain-3B(+) autophagy bodies, whereas U.S. Food and Drug Administration-approved autophagy-inducing drug (carbamazepine) significantly (P < 0.01) decreases their colocalization and expression, suggesting CS-impaired autophagy. Moreover, CSE treatment significantly increases valosin-containing protein-p62 protein-protein interaction (P < 0.0005) and p62 expression (aberrant autophagy marker; P < 0.0001), verifying CS-impaired autophagy as an aggresome formation mechanism. We also found that inhibiting protein synthesis by cycloheximide does not deplete CS-induced ubiquitinated protein aggregates, suggesting the role of CS-induced protein synthesis in aggresome formation. Next, we used an emphysema murine model to verify that chronic CS significantly (P < 0.0005) induces aggresome formation. Moreover, we observed that autophagy induction by carbamazepine inhibits CS-induced aggresome formation and alveolar space enlargement (P < 0.001), confirming involvement of aggresome bodies in COPD-emphysema pathogenesis. Finally, significantly higher p62 accumulation in smokers and severe COPD-emphysema lungs (Global Initiative for Chronic Obstructive Lung Disease Stage III/IV) as compared with normal nonsmokers (Global Initiative for Chronic Obstructive Lung Disease Stage 0) substantiates the pathogenic role of autophagy impairment in aggresome formation and COPD-emphysema progression. In conclusion, CS-induced aggresome formation is a novel mechanism involved in COPD-emphysema pathogenesis.

摘要

已知接触香烟烟雾(CS)会导致蛋白质稳态失衡,进而引发泛素化蛋白的积累。因此,本研究的主要目的是确定一手和二手CS是否会诱导泛素化蛋白在核周空间中定位形成聚集体。此外,我们试图确定烟雾诱导聚集体形成导致慢性阻塞性肺疾病(COPD)-肺气肿发病机制的机制。因此,使用CS提取物(CSE)处理Beas2b细胞,通过免疫印迹、显微镜检查和报告基因检测对CS诱导的聚集体形成进行体外实验分析,而慢性CS暴露小鼠模型和人类COPD-肺气肿肺组织则用于验证。在初步分析中,我们观察到CSE处理的Beas2b细胞不溶性蛋白部分中泛素化蛋白聚集显著增加(P < 0.01)。我们证实CS诱导的泛素聚集体作为聚集体位于核周空间。这些CS诱导的聚集体(P < 0.001)与自噬蛋白微管相关蛋白1轻链3B(+)自噬体共定位,而美国食品药品监督管理局批准的自噬诱导药物(卡马西平)显著(P < 0.01)降低它们的共定位和表达,提示CS损害自噬。此外,CSE处理显著增加含缬酪肽蛋白-p62蛋白-蛋白相互作用(P < 0.0005)和p62表达(异常自噬标志物;P < 0.0001),证实CS损害自噬是聚集体形成机制。我们还发现用环己酰亚胺抑制蛋白质合成不会消耗CS诱导的泛素化蛋白聚集体,提示CS诱导的蛋白质合成在聚集体形成中的作用。接下来,我们使用肺气肿小鼠模型验证慢性CS显著(P < 0.0005)诱导聚集体形成。此外,我们观察到卡马西平诱导的自噬抑制CS诱导的聚集体形成和肺泡腔扩大(P < 0.001),证实聚集体在COPD-肺气肿发病机制中的作用。最后,与正常非吸烟者(慢性阻塞性肺疾病全球倡议0期)相比,吸烟者和重度COPD-肺气肿患者(慢性阻塞性肺疾病全球倡议III/IV期)肺组织中p62积累显著更高,证实自噬受损在聚集体形成和COPD-肺气肿进展中的致病作用。总之,CS诱导的聚集体形成是COPD-肺气肿发病机制中的一种新机制。

相似文献

1
Role of Cigarette Smoke-Induced Aggresome Formation in Chronic Obstructive Pulmonary Disease-Emphysema Pathogenesis.
Am J Respir Cell Mol Biol. 2015 Aug;53(2):159-73. doi: 10.1165/rcmb.2014-0107OC.
3
Cigarette smoke-induced autophagy impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis.
Am J Physiol Cell Physiol. 2018 Jan 1;314(1):C73-C87. doi: 10.1152/ajpcell.00110.2016. Epub 2016 Jul 13.
6
Critical role of proteostasis-imbalance in pathogenesis of COPD and severe emphysema.
J Mol Med (Berl). 2011 Jun;89(6):577-93. doi: 10.1007/s00109-011-0732-8. Epub 2011 Feb 12.
7
Autophagy augmentation alleviates cigarette smoke-induced CFTR-dysfunction, ceramide-accumulation and COPD-emphysema pathogenesis.
Free Radic Biol Med. 2019 Feb 1;131:81-97. doi: 10.1016/j.freeradbiomed.2018.11.023. Epub 2018 Nov 28.
8
Nicotine exposure induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment.
Free Radic Biol Med. 2016 Aug;97:441-453. doi: 10.1016/j.freeradbiomed.2016.06.017. Epub 2016 Jul 6.
9
Cigarette smoke induced autophagy-impairment regulates AMD pathogenesis mechanisms in ARPE-19 cells.
PLoS One. 2017 Aug 2;12(8):e0182420. doi: 10.1371/journal.pone.0182420. eCollection 2017.
10
Airway Exposure to E-Cigarette Vapors Impairs Autophagy and Induces Aggresome Formation.
Antioxid Redox Signal. 2016 Feb 1;24(4):186-204. doi: 10.1089/ars.2015.6367. Epub 2015 Oct 27.

引用本文的文献

2
Proteostasis signatures in human diseases.
PLoS Comput Biol. 2025 Jun 17;21(6):e1013155. doi: 10.1371/journal.pcbi.1013155. eCollection 2025 Jun.
3
The protective effect of carbamazepine on acute lung injury induced by hemorrhagic shock and resuscitation in rats.
PLoS One. 2024 Oct 23;19(10):e0309622. doi: 10.1371/journal.pone.0309622. eCollection 2024.
4
ABCG2 transporter reduces protein aggregation in cigarette smoke condensate-exposed A549 lung cancer cells.
PLoS One. 2024 Mar 5;19(3):e0297661. doi: 10.1371/journal.pone.0297661. eCollection 2024.
6
Impaired autophagy in the lower airways and lung parenchyma in stable COPD.
ERJ Open Res. 2023 Dec 18;9(6). doi: 10.1183/23120541.00423-2023. eCollection 2023 Nov.
9
Autophagy/Mitophagy in Airway Diseases: Impact of Oxidative Stress on Epithelial Cells.
Biomolecules. 2023 Aug 4;13(8):1217. doi: 10.3390/biom13081217.
10
Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD.
Front Immunol. 2023 Jul 13;14:1201658. doi: 10.3389/fimmu.2023.1201658. eCollection 2023.

本文引用的文献

1
Autophagy: An Integral Component of the Mammalian Stress Response.
J Biochem Pharmacol Res. 2013 Sep 1;1(3):176-188.
2
Inclusion body formation, macroautophagy, and the role of HDAC6 in neurodegeneration.
Acta Neuropathol. 2013 Dec;126(6):793-807. doi: 10.1007/s00401-013-1158-x. Epub 2013 Aug 3.
3
Oxidative stress in COPD.
Chest. 2013 Jul;144(1):266-273. doi: 10.1378/chest.12-2664.
4
The hallmarks of aging.
Cell. 2013 Jun 6;153(6):1194-217. doi: 10.1016/j.cell.2013.05.039.
5
Tobacco smoke induced COPD/emphysema in the animal model-are we all on the same page?
Front Physiol. 2013 May 15;4:91. doi: 10.3389/fphys.2013.00091. eCollection 2013.
6
Autophagy: a potential therapeutic target in lung diseases.
Am J Physiol Lung Cell Mol Physiol. 2013 Jul 15;305(2):L93-107. doi: 10.1152/ajplung.00072.2013. Epub 2013 May 24.
7
The activation sequence of cellular protein handling systems after proteasomal inhibition in dopaminergic cells.
Chem Biol Interact. 2013 Jul 5;204(2):116-24. doi: 10.1016/j.cbi.2013.04.016. Epub 2013 May 14.
8
Create and preserve: proteostasis in development and aging is governed by Cdc48/p97/VCP.
Biochim Biophys Acta. 2014 Jan;1843(1):205-15. doi: 10.1016/j.bbamcr.2013.03.031. Epub 2013 Apr 10.
9
Protein aggregation and degradation mechanisms in neurodegenerative diseases.
Am J Neurodegener Dis. 2013;2(1):1-14. Epub 2013 Mar 8.
10
Second hand smoke and COPD: lessons from animal studies.
Front Physiol. 2013 Feb 27;4:30. doi: 10.3389/fphys.2013.00030. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验