Bodas Manish, Silverberg David, Walworth Kyla, Brucia Kathryn, Vij Neeraj
1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan.
2 Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine , Baltimore, Maryland.
Antioxid Redox Signal. 2017 Sep 1;27(7):433-451. doi: 10.1089/ars.2016.6895. Epub 2017 Feb 7.
Cigarette smoke (CS)-mediated acquired cystic fibrosis transmembrane conductance regulator (CFTR)-dysfunction, autophagy-impairment, and resulting inflammatory-oxidative/nitrosative stress leads to chronic obstructive pulmonary disease (COPD)-emphysema pathogenesis. Moreover, nitric oxide (NO) signaling regulates lung function decline, and low serum NO levels that correlates with COPD severity. Hence, we aim to evaluate here the effects and mechanism(s) of S-nitrosoglutathione (GSNO) augmentation in regulating inflammatory-oxidative stress and COPD-emphysema pathogenesis.
Our data shows that cystic fibrosis transmembrane conductance regulator (CFTR) colocalizes with aggresome bodies in the lungs of COPD subjects with increasing emphysema severity (Global Initiative for Chronic Obstructive Lung Disease [GOLD] I - IV) compared to nonemphysema controls (GOLD 0). We further demonstrate that treatment with GSNO or S-nitrosoglutathione reductase (GSNOR)-inhibitor (N6022) significantly inhibits cigarette smoke extract (CSE; 5%)-induced decrease in membrane CFTR expression by rescuing it from ubiquitin (Ub)-positive aggresome bodies (p < 0.05). Moreover, GSNO restoration significantly (p < 0.05) decreases CSE-induced reactive oxygen species (ROS) activation and autophagy impairment (decreased accumulation of ubiquitinated proteins in the insoluble protein fractions and restoration of autophagy flux). In addition, GSNO augmentation inhibits protein misfolding as CSE-induced colocalization of ubiquitinated proteins and LC3B (in autophagy bodies) is significantly reduced by GSNO/N6022 treatment. We verified using the preclinical COPD-emphysema murine model that chronic CS (Ch-CS)-induced inflammation (interleukin [IL]-6/IL-1β levels), aggresome formation (perinuclear coexpression/colocalization of ubiquitinated proteins [Ub] and p62 [impaired autophagy marker], and CFTR), oxidative/nitrosative stress (p-Nrf2, inducible nitric oxide synthase [iNOS], and 3-nitrotyrosine expression), apoptosis (caspase-3/7 activity), and alveolar airspace enlargement (Lm) are significantly (p < 0.05) alleviated by augmenting airway GSNO levels. As a proof of concept, we demonstrate that GSNO augmentation suppresses Ch-CS-induced perinuclear CFTR protein accumulation (p < 0.05), which restores both acquired CFTR dysfunction and autophagy impairment, seen in COPD-emphysema subjects.
GSNO augmentation alleviates CS-induced acquired CFTR dysfunction and resulting autophagy impairment.
Overall, we found that augmenting GSNO levels controls COPD-emphysema pathogenesis by reducing CS-induced acquired CFTR dysfunction and resulting autophagy impairment and chronic inflammatory-oxidative stress. Antioxid. Redox Signal. 27, 433-451.
香烟烟雾(CS)介导的获得性囊性纤维化跨膜传导调节因子(CFTR)功能障碍、自噬损伤以及由此产生的炎症性氧化/亚硝化应激导致慢性阻塞性肺疾病(COPD)-肺气肿的发病机制。此外,一氧化氮(NO)信号调节肺功能下降,且低血清NO水平与COPD严重程度相关。因此,我们旨在评估S-亚硝基谷胱甘肽(GSNO)增加在调节炎症性氧化应激和COPD-肺气肿发病机制中的作用及机制。
我们的数据显示,与非肺气肿对照组(GOLD 0)相比,在肺气肿严重程度增加的COPD患者(慢性阻塞性肺疾病全球倡议组织[GOLD]I-IV级)的肺中,囊性纤维化跨膜传导调节因子(CFTR)与聚集体共定位。我们进一步证明,用GSNO或S-亚硝基谷胱甘肽还原酶(GSNOR)抑制剂(N6022)处理可通过将膜CFTR表达从泛素(Ub)阳性聚集体中拯救出来,显著抑制香烟烟雾提取物(CSE;5%)诱导的膜CFTR表达降低(p<0.05)。此外,GSNO恢复显著(p<0.05)降低CSE诱导的活性氧(ROS)激活和自噬损伤(不溶性蛋白组分中泛素化蛋白积累减少和自噬通量恢复)。此外,GSNO增加抑制蛋白质错误折叠,因为GSNO/N6022处理显著减少了CSE诱导的泛素化蛋白与LC3B(自噬体中)的共定位。我们使用临床前COPD-肺气肿小鼠模型验证,通过增加气道GSNO水平,慢性CS(Ch-CS)诱导的炎症(白细胞介素[IL]-6/IL-1β水平)、聚集体形成(泛素化蛋白[Ub]和p62[自噬受损标志物]的核周共表达/共定位以及CFTR)、氧化/亚硝化应激(p-Nrf2、诱导型一氧化氮合酶[iNOS]和3-硝基酪氨酸表达)、细胞凋亡(半胱天冬酶-3/7活性)和肺泡腔扩大(Lm)均得到显著(p<0.05)缓解。作为概念验证,我们证明GSNO增加可抑制Ch-CS诱导的核周CFTR蛋白积累(p<0.05),这恢复了在COPD-肺气肿患者中出现的获得性CFTR功能障碍和自噬损伤。
GSNO增加可减轻CS诱导的获得性CFTR功能障碍及由此产生的自噬损伤。
总体而言,我们发现增加GSNO水平可通过减少CS诱导的获得性CFTR功能障碍、由此产生的自噬损伤和慢性炎症性氧化应激来控制COPD-肺气肿的发病机制。《抗氧化与氧化还原信号》27卷,433-451页。