Suppr超能文献

三维多孔电极的高速率性能锂离子电池结构优化。

Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries.

机构信息

Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States.

出版信息

ACS Nano. 2015 Feb 24;9(2):2194-202. doi: 10.1021/nn505490u. Epub 2014 Dec 17.

Abstract

Much progress has recently been made in the development of active materials, electrode morphologies and electrolytes for lithium ion batteries. Well-defined studies on size effects of the three-dimensional (3D) electrode architecture, however, remain to be rare due to the lack of suitable material platforms where the critical length scales (such as pore size and thickness of the active material) can be freely and deterministically adjusted over a wide range without affecting the overall 3D morphology of the electrode. Here, we report on a systematic study on length scale effects on the electrochemical performance of model 3D np-Au/TiO2 core/shell electrodes. Bulk nanoporous gold provides deterministic control over the pore size and is used as a monolithic metallic scaffold and current collector. Extremely uniform and conformal TiO2 films of controlled thickness were deposited on the current collector by employing atomic layer deposition (ALD). Our experiments demonstrate profound performance improvements by matching the Li(+) diffusivity in the electrolyte and the solid state through adjusting pore size and thickness of the active coating which, for 200 μm thick porous electrodes, requires the presence of 100 nm pores. Decreasing the thickness of the TiO2 coating generally improves the power performance of the electrode by reducing the Li(+) diffusion pathway, enhancing the Li(+) solid solubility, and minimizing the voltage drop across the electrode/electrolyte interface. With the use of the optimized electrode morphology, supercapacitor-like power performance with lithium-ion-battery energy densities was realized. Our results provide the much-needed fundamental insight for the rational design of the 3D architecture of lithium ion battery electrodes with improved power performance.

摘要

最近在锂离子电池的活性材料、电极形态和电解质的开发方面取得了很大进展。然而,由于缺乏合适的材料平台,使得对三维(3D)电极结构的尺寸效应进行明确的研究仍然很少见,在这种材料平台中,可以在不影响电极整体 3D 形态的情况下,自由和确定地调整关键长度尺度(如孔径和活性材料的厚度)的大范围。在这里,我们报告了对模型 3D np-Au/TiO2 核/壳电极的电化学性能的长度尺度效应的系统研究。体纳米多孔金提供了对孔径的确定性控制,并用作整体金属支架和集流器。通过采用原子层沉积(ALD),在集流器上沉积了具有受控厚度的极其均匀和共形的 TiO2 薄膜。我们的实验通过调整活性涂层的孔径和厚度来匹配电解质和固态中的 Li(+)扩散率,从而证明了性能的显著提高,对于 200 μm 厚的多孔电极,需要存在 100nm 的孔。通常,通过减小 TiO2 涂层的厚度,可以通过减小 Li(+)扩散途径、提高 Li(+)固溶性和最小化电极/电解质界面处的电压降来提高电极的功率性能。通过使用优化的电极形态,实现了具有锂离子电池能量密度的超级电容器样功率性能。我们的结果为具有改进功率性能的锂离子电池电极的 3D 结构的合理设计提供了急需的基本见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验