Li Ting, Wang Jing, Li Xia, Si Liang, Zhang Sen, Deng Chao
Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education College of Chemistry and Chemical Engineering Harbin Normal University Harbin 150025 Heilongjiang China.
Department of Biological Science and Engineering Modern Testing Center Harbin Normal University Harbin 150025 Heilongjiang China.
Adv Sci (Weinh). 2020 Jan 21;7(5):1903276. doi: 10.1002/advs.201903276. eCollection 2020 Mar.
Diverse reproduction modes of bio-organisms open new intriguing opportunities for biochemistry-enabled materials. Herein, a new strategy is developed to explore biodirected structures for functional materials via controlling the reproduction mode. Yeast with sexual or asexual reproduction mode are employed in this work. They result in two different biodirected structures, from bowl-like hollow hemisphere to "bubble-in-sphere" (BIS) structure, for the VN O /C composites. Benefitting from the hierarchical structure, nanoscale particles and conductive biomass-derived carbon base, both VN O /C biocomposites achieve high power/energy density, good reliability, and excellent long-term cycling stability in aqueous Zn-ion batteries. Deep investigations further reveal that different biodirected structures greatly influence the electrochemical properties of biocomposites. The bowl-like structures with thin shells and folded double layers achieve larger surface area and more active sites, which ensure their faster kinetics and better high rate capability. The BIS structures with a more compact assembly and higher stack capability are favorable to the better energy storage. Therefore, this work not only introduces a new clue to boost biodirected structures for functional materials, but also propels the development of Zn-ion batteries in diverse applications.
生物有机体多样的繁殖模式为基于生物化学的材料带来了新的有趣机遇。在此,通过控制繁殖模式开发了一种探索功能材料生物导向结构的新策略。本工作采用具有有性或无性繁殖模式的酵母。它们为VN O /C复合材料带来了两种不同的生物导向结构,从碗状空心半球到“球中泡”(BIS)结构。得益于分层结构、纳米级颗粒和导电生物质衍生的碳基,两种VN O /C生物复合材料在水系锌离子电池中均实现了高功率/能量密度、良好的可靠性和出色的长期循环稳定性。深入研究进一步表明,不同的生物导向结构对生物复合材料的电化学性能有很大影响。具有薄壳和折叠双层的碗状结构具有更大的表面积和更多的活性位点,这确保了它们更快的动力学和更好的高倍率性能。具有更紧凑组装和更高堆叠能力的BIS结构有利于更好的能量存储。因此,这项工作不仅为促进功能材料的生物导向结构引入了新线索,还推动了锌离子电池在各种应用中的发展。