Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2, France.
Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2, France.
Mater Sci Eng C Mater Biol Appl. 2015 Feb;47:407-12. doi: 10.1016/j.msec.2014.11.045. Epub 2014 Nov 13.
In this paper a new sol-gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol-gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol-gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2M nitric acid solution or either a 5mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer-Emmett-Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol-gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol-gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol-gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol-gel reactions without alteration of the bioactivity of the 45S5 bioactive glass.
在本文中,我们探索了一种新的溶胶-凝胶方法来合成 45S5 生物活性玻璃。我们证明可以用柠檬酸代替通常的硝酸来催化溶胶-凝胶反应。用柠檬酸代替硝酸可以大大降低催化硅和磷烷醇解所需的酸溶液的浓度。通过使用 2M 硝酸溶液或 5mM 柠檬酸溶液,获得了两种化学成分非常接近 45S5 的溶胶-凝胶粉末。这些粉末进行了表征,并与商业 Bioglass®进行了比较。通过扫描电子显微镜 (SEM) 和 Brunauer-Emmett-Teller 方法 (BET) 评估了两种生物玻璃粉末的表面特性。傅里叶变换红外光谱 (FTIR) 和 X 射线衍射 (XRD) 表明两种溶胶-凝胶粉末存在部分结晶,同时形成了结晶相。然后在无细胞模拟体液 (SBF) 中浸泡的最初几个小时内研究了体外生物活性。在 SBF 中浸泡 4 小时后,我们清楚地证明了两种溶胶-凝胶粉末的生物活性水平相似,且远高于商业 Bioglass®。这种生物活性的提高与粉末合成过程中孔隙率和比表面积的增加有关。此外,柠檬酸可以有效地替代硝酸来催化溶胶-凝胶反应,而不会改变 45S5 生物活性玻璃的生物活性。
Mater Sci Eng C Mater Biol Appl. 2014-11-13
Acta Biomater. 2011-6-13
Mater Sci Eng C Mater Biol Appl. 2016-5
J Mech Behav Biomed Mater. 2019-8-1
J Mater Sci Mater Med. 2009-6
Acta Biomater. 2010-5-4
J Mater Sci Mater Med. 2024-3-25
Molecules. 2023-10-7
Materials (Basel). 2021-9-20