Suppr超能文献

表观遗传学对成人肺部疾病发育起源的影响。

Epigenetic contributions to the developmental origins of adult lung disease.

作者信息

Joss-Moore Lisa A, Lane Robert H, Albertine Kurt H

机构信息

Division of Neonatology, Department of Pediatrics, University of Utah, P.O. Box 581289, Salt Lake City, UT 84158, USA.

出版信息

Biochem Cell Biol. 2015 Apr;93(2):119-27. doi: 10.1139/bcb-2014-0093. Epub 2014 Oct 13.

Abstract

Perinatal insults, including intrauterine growth restriction, preterm birth, maternal exposure to toxins, or dietary deficiencies produce deviations in the epigenome of lung cells. Occurrence of perinatal insults often coincides with the final stages of lung development. The result of epigenome disruptions in response to perinatal insults during lung development may be long-term structural and functional impairment of the lung and development of lung disease. Understanding the contribution of epigenetic mechanisms to life-long lung disease following perinatal insults is the focus of the developmental origins of adult lung disease field. DNA methylation, histone modifications, and microRNA changes are all observed in various forms of lung disease. However, the perinatal contribution to such epigenetic mechanisms is poorly understood. Here we discuss the developmental origins of adult lung disease, the interplay between perinatal events, lung development and disease, and the role that epigenetic mechanisms play in connecting these events.

摘要

围产期损伤,包括子宫内生长受限、早产、母亲接触毒素或饮食缺乏,会导致肺细胞表观基因组出现偏差。围产期损伤的发生通常与肺发育的最后阶段同时出现。在肺发育过程中,对围产期损伤作出反应的表观基因组破坏的结果可能是肺的长期结构和功能损害以及肺部疾病的发展。了解表观遗传机制对围产期损伤后终身肺部疾病的作用是成人肺部疾病发育起源领域的研究重点。在各种形式的肺部疾病中均观察到DNA甲基化、组蛋白修饰和微小RNA变化。然而,围产期对这些表观遗传机制的作用却知之甚少。在此,我们讨论成人肺部疾病的发育起源、围产期事件、肺发育与疾病之间的相互作用,以及表观遗传机制在连接这些事件中所起的作用。

相似文献

1
Epigenetic contributions to the developmental origins of adult lung disease.
Biochem Cell Biol. 2015 Apr;93(2):119-27. doi: 10.1139/bcb-2014-0093. Epub 2014 Oct 13.
2
Epigenetics and the developmental origins of lung disease.
Mol Genet Metab. 2011 Sep-Oct;104(1-2):61-6. doi: 10.1016/j.ymgme.2011.07.018. Epub 2011 Jul 23.
3
Intergenerational epigenetic inheritance in models of developmental programming of adult disease.
Semin Cell Dev Biol. 2015 Jul;43:85-95. doi: 10.1016/j.semcdb.2015.06.006. Epub 2015 Jun 30.
4
Epigenomics in stress tolerance of plants under the climate change.
Mol Biol Rep. 2023 Jul;50(7):6201-6216. doi: 10.1007/s11033-023-08539-6. Epub 2023 Jun 9.
5
Epigenetic responses and the developmental origins of health and disease.
J Endocrinol. 2019 Jul 1;242(1):T105-T119. doi: 10.1530/JOE-19-0009.
6
New insights into lung development and diseases: the role of microRNAs.
Biochem Cell Biol. 2015 Apr;93(2):139-48. doi: 10.1139/bcb-2014-0103. Epub 2014 Nov 7.
7
Relationship between epigenetic regulation, dietary habits, and the developmental origins of health and disease theory.
Congenit Anom (Kyoto). 2017 Nov;57(6):184-190. doi: 10.1111/cga.12213. Epub 2017 Apr 20.
8
Epigenetic alterations caused by nutritional stress during fetal programming of the endocrine pancreas.
Arch Med Res. 2015 Feb;46(2):93-100. doi: 10.1016/j.arcmed.2015.01.005. Epub 2015 Feb 3.
9
Paediatrician's guide to epigenetics.
Arch Dis Child. 2019 Mar;104(3):297-301. doi: 10.1136/archdischild-2018-316054. Epub 2019 Jan 17.

引用本文的文献

2
Developmental origins of adult diseases.
Med Rev (2021). 2022 Nov 11;2(5):450-470. doi: 10.1515/mr-2022-0027. eCollection 2022 Oct.
3
DNA methylation patterns at birth predict health outcomes in young adults born very low birthweight.
Clin Epigenetics. 2023 Mar 23;15(1):47. doi: 10.1186/s13148-023-01463-3.
4
Time-Specific Factors Influencing the Development of Asthma in Children.
Biomedicines. 2022 Mar 24;10(4):758. doi: 10.3390/biomedicines10040758.
5
Quality of Life and a Surveillant Endocannabinoid System.
Front Neurosci. 2021 Oct 28;15:747229. doi: 10.3389/fnins.2021.747229. eCollection 2021.
6
Perinatal Nutritional and Metabolic Pathways: Early Origins of Chronic Lung Diseases.
Front Med (Lausanne). 2021 Jun 15;8:667315. doi: 10.3389/fmed.2021.667315. eCollection 2021.
9
Nutrition and Lung Growth.
Nutrients. 2018 Jul 18;10(7):919. doi: 10.3390/nu10070919.

本文引用的文献

1
Emerging role of MicroRNAs and long noncoding RNAs in respiratory disease.
Chest. 2014 Jul;146(1):193-204. doi: 10.1378/chest.13-2736.
2
Perinatal and early childhood environmental factors influencing allergic asthma immunopathogenesis.
Int Immunopharmacol. 2014 Sep;22(1):21-30. doi: 10.1016/j.intimp.2014.06.005. Epub 2014 Jun 19.
3
Fatty acid requirements in preterm infants and their role in health and disease.
Clin Perinatol. 2014 Jun;41(2):363-82. doi: 10.1016/j.clp.2014.02.007. Epub 2014 Apr 13.
4
miRNAs at the interface of cellular stress and disease.
EMBO J. 2014 Jul 1;33(13):1428-37. doi: 10.15252/embj.201488142. Epub 2014 May 27.
5
Beyond the genome: epigenetic mechanisms in lung remodeling.
Physiology (Bethesda). 2014 May;29(3):177-85. doi: 10.1152/physiol.00048.2013.
6
The new world of RNAs.
Genet Mol Biol. 2014 Mar;37(1 Suppl):285-93. doi: 10.1590/s1415-47572014000200014.
7
Epigenetics of idiopathic pulmonary fibrosis.
Transl Res. 2015 Jan;165(1):48-60. doi: 10.1016/j.trsl.2014.03.011. Epub 2014 Mar 31.
8
Early lung development: lifelong effect on respiratory health and disease.
Lancet Respir Med. 2013 Nov;1(9):728-42. doi: 10.1016/S2213-2600(13)70118-8. Epub 2013 Aug 13.
10
Dynamic regulation of transcriptional states by chromatin and transcription factors.
Nat Rev Genet. 2014 Feb;15(2):69-81. doi: 10.1038/nrg3623. Epub 2013 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验