IEEE Trans Neural Netw Learn Syst. 2015 Sep;26(9):2086-97. doi: 10.1109/TNNLS.2014.2360933. Epub 2014 Dec 4.
In this paper, a dynamic surface control (DSC) scheme is proposed for a class of uncertain strict-feedback nonlinear systems in the presence of input saturation and unknown external disturbance. The radial basis function neural network (RBFNN) is employed to approximate the unknown system function. To efficiently tackle the unknown external disturbance, a nonlinear disturbance observer (NDO) is developed. The developed NDO can relax the known boundary requirement of the unknown disturbance and can guarantee the disturbance estimation error converge to a bounded compact set. Using NDO and RBFNN, the DSC scheme is developed for uncertain nonlinear systems based on a backstepping method. Using a DSC technique, the problem of explosion of complexity inherent in the conventional backstepping method is avoided, which is specially important for designs using neural network approximations. Under the proposed DSC scheme, the ultimately bounded convergence of all closed-loop signals is guaranteed via Lyapunov analysis. Simulation results are given to show the effectiveness of the proposed DSC design using NDO and RBFNN.
本文针对一类存在输入饱和和未知外部干扰的不确定严格反馈非线性系统,提出了一种动态面控制(DSC)方案。利用径向基函数神经网络(RBFNN)来逼近未知系统函数。为了有效地处理未知外部干扰,开发了一种非线性干扰观测器(NDO)。所提出的 NDO 可以放宽对未知干扰的已知边界要求,并能保证干扰估计误差收敛到有界紧致集。基于反推法,利用 NDO 和 RBFNN 为不确定非线性系统开发了 DSC 方案。利用 DSC 技术,可以避免传统反推法固有的复杂性爆炸问题,这对于使用神经网络逼近的设计尤为重要。在所提出的 DSC 方案下,通过 Lyapunov 分析保证了所有闭环信号的最终有界收敛性。通过仿真结果验证了使用 NDO 和 RBFNN 的 DSC 设计的有效性。