a Faculty of Science, Chemistry Department , King Abdul-Aziz University , Jeddah , Saudi Arabia.
J Biomol Struct Dyn. 2015;33(10):2121-32. doi: 10.1080/07391102.2014.997291. Epub 2015 Jan 12.
This study aims to identify the origin of the extra stability of alloxan, a biologically active pyrimidine. To achieve this goal, detailed DFT computations and quantum dynamics simulations have been performed to establish the most stable conformation and the global minimum structure on the alloxan potential energy surface. The effects of the solvent, basis set, and DFT method have been examined to validate the theoretical model adopted throughout the work. Two non-covalent intermolecular dimers of alloxan, the H-bonded and dipolar dimers, have been investigated at the ωB97X-D and M06-2X levels of theory using the triple zeta 6-311++G** to establish their relative stability. Quantum chemical topology features and natural bond orbital analysis (NBO) have been performed to identify and characterize the forces that govern the structures and underlie the extra stability of alloxan.
本研究旨在确定生物活性嘧啶化合物——别嘌醇额外稳定性的起源。为了实现这一目标,我们进行了详细的密度泛函理论(DFT)计算和量子动力学模拟,以确定别嘌醇势能表面上的最稳定构象和全局最小结构。我们还检验了溶剂、基组和 DFT 方法的影响,以验证整个工作中采用的理论模型。我们使用 ωB97X-D 和 M06-2X 理论水平的三 ζ 6-311++G**基组,研究了别嘌醇的两种非共价分子间二聚体——氢键和偶极二聚体,以确定它们的相对稳定性。我们还进行了量子化学拓扑特征和自然键轨道分析(NBO),以识别和表征控制别嘌醇结构和额外稳定性的力。