Suppr超能文献

空间遗传学中的多重共线性:使用共性分析去粗存精。

Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses.

作者信息

Prunier J G, Colyn M, Legendre X, Nimon K F, Flamand M C

机构信息

Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4, L7.07.14, 1348, Louvain-la-Neuve, Belgium.

出版信息

Mol Ecol. 2015 Jan;24(2):263-83. doi: 10.1111/mec.13029. Epub 2015 Jan 9.

Abstract

Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance-partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses.

摘要

空间遗传学中的直接梯度分析为描述野生动物物种遗传变异的内在复杂性提供了独特的机会,并且是许多方法学发展的对象。然而,解释变量之间的多重共线性是多元回归分析中的一个系统性问题,很可能在正确解释直接梯度分析结果时造成严重困难,存在得出错误结论、误导研究以及采取低效或适得其反的保护措施的风险。我们使用模拟数据集以及距离矩阵上的线性和逻辑回归,说明了共同性分析(CA)(一种最近在生态学领域引入的详细方差划分程序)如何可用于处理空间预测变量之间的非独立性。通过将模型拟合指数分解为独特方差分量和共同(或共享)方差分量,共同性分析能够识别多重共线性的位置和程度,揭示虚假相关性,从而全面改进多元回归的解释。尽管存在一些固有限制,尤其是在抗性模型优化的情况下,但本综述强调了共同性分析在解释空间遗传学中复杂多重共线性模式方面的巨大潜力,并确定了未来的应用和研究方向。我们强烈敦促空间遗传学家在进行直接梯度分析时系统地研究共同性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验