State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People׳s Republic of China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People׳s Republic of China.
State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People׳s Republic of China.
Metab Eng. 2015 Mar;28:19-27. doi: 10.1016/j.ymben.2014.11.010. Epub 2014 Dec 8.
Biotechnological production of biofuels is restricted by toxicity of the products such as ethanol and butanol. As its low toxicity to microbes, 2,3-butanediol (2,3-BD), a fuel and platform bio-chemical, could be a promising alternative for biofuel production from renewable bioresources. In addition, no bacterial strains have been reported to produce enantiopure 2,3-BD using lignocellulosic hydrolysates. In this study, Enterobacter cloacae strain SDM was systematically and metabolically engineered to construct an efficient biocatalyst for production of the fuel and enantiopure bio-chemical-(2R,3R)-2,3-BD. First, the various (2R,3R)-2,3-BD dehydrogenase encoding genes were expressed in a meso-2,3-BD dehydrogenase encoding gene disrupted E. cloacae strain under native promoter Pb of the 2,3-BD biosynthetic gene cluster of E. cloacae. Then, carbon catabolite repression was eliminated via inactivation of the glucose transporter encoding gene ptsG and overexpression of a galactose permease encoding gene galP. The resultant strain could utilize glucose and xylose simultaneously. To improve the efficiency of (2R,3R)-2,3-BD production, the byproduct-producing genes (ldh and frdA) were knocked out, thereby enhancing the yield of (2R,3R)-2,3-BD by 16.5% in 500-mL Erlenmeyer flasks. By using fed-batch fermentation in a 5-L bioreactor, 152.0 g/L (2R,3R)-2,3-BD (purity>97.5%) was produced within 44 h with a specific productivity of 3.5 g/[Lh] and a yield of 97.7% from a mixture of glucose and xylose, two major carbohydrate components in lignocellulosic hydrolysates. In addition, when a lignocellulosic hydrolysate was used as the substrate, 119.4 g/L (2R,3R)-2,3-BD (purity>96.0%) was produced within 51 h with a productivity of 2.3g/[Lh] and a yield of 95.0%. These results show that the highest records have been acquired for enantiopure (2R,3R)-2,3-BD production by a native or engineered strain from biomass-derived sugars. In addition to producing the 2,3-BD, our systematic approach might also be used in the production of other important chemicals by using lignocellulose-derived sugars.
生物燃料的生物技术生产受到产品毒性的限制,如乙醇和丁醇。由于其对微生物的低毒性,2,3-丁二醇(2,3-BD)作为一种燃料和平台生物化学物质,可能是一种很有前途的可再生生物资源生产生物燃料的替代品。此外,尚未有报道称细菌菌株能够利用木质纤维素水解物生产对映纯 2,3-BD。在这项研究中,肠杆菌 cloacae 菌株 SDM 被系统地进行了代谢工程改造,以构建一种用于生产燃料和对映纯生物化学物质-(2R,3R)-2,3-BD 的高效生物催化剂。首先,在天然启动子 Pb 的作用下,在缺失编码 2,3-BD 生物合成基因簇的 meso-2,3-BD 脱氢酶编码基因的肠杆菌 cloacae 菌株中表达了各种(2R,3R)-2,3-BD 脱氢酶编码基因。然后,通过失活葡萄糖转运蛋白编码基因 ptsG 和过表达半乳糖透性酶编码基因 galP,消除了碳分解代谢物的抑制。结果表明,该菌株可以同时利用葡萄糖和木糖。为了提高(2R,3R)-2,3-BD 的生产效率,敲除了副产物产生基因(ldh 和 frdA),从而使 500-mL 摇瓶中的(2R,3R)-2,3-BD 产量提高了 16.5%。在 5-L 生物反应器中进行分批补料发酵,以葡萄糖和木糖的混合物为底物,在 44 h 内生产出 152.0 g/L(2R,3R)-2,3-BD(纯度>97.5%),比活产率为 3.5 g/[Lh],产率为 97.7%。此外,当使用木质纤维素水解物作为底物时,在 51 h 内生产出 119.4 g/L(2R,3R)-2,3-BD(纯度>96.0%),比活产率为 2.3 g/[Lh],产率为 95.0%。这些结果表明,利用生物量衍生糖,从天然或工程菌株中获得了(2R,3R)-2,3-BD 生产的最高记录。除了生产 2,3-BD 外,我们的系统方法还可用于利用木质纤维素衍生糖生产其他重要化学品。