Herrera-Moyano Emilia, Moriel-Carretero María, Montelone Beth A, Aguilera Andrés
Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain.
Division of Biology and College of Arts & Sciences, Kansas State University, Manhattan, Kansas, United States of America.
PLoS Genet. 2014 Dec 11;10(12):e1004859. doi: 10.1371/journal.pgen.1004859. eCollection 2014 Dec.
The eukaryotic TFIIH complex is involved in Nucleotide Excision Repair and transcription initiation. We analyzed three yeast mutations of the Rad3/XPD helicase of TFIIH known as rem (recombination and mutation phenotypes). We found that, in these mutants, incomplete NER reactions lead to replication fork breaking and the subsequent engagement of the homologous recombination machinery to restore them. Nevertheless, the penetrance varies among mutants, giving rise to a phenotype gradient. Interestingly, the mutations analyzed reside at the ATP-binding groove of Rad3 and in vivo experiments reveal a gain of DNA affinity upon damage of the mutant Rad3 proteins. Since mutations at the ATP-binding groove of XPD in humans are present in the Xeroderma pigmentosum-Cockayne Syndrome (XP-CS), we recreated rem mutations in human cells, and found that these are XP-CS-like. We propose that the balance between the loss of helicase activity and the gain of DNA affinity controls the capacity of TFIIH to open DNA during NER, and its persistence at both DNA lesions and promoters. This conditions NER efficiency and transcription resumption after damage, which in human cells would explain the XP-CS phenotype, opening new perspectives to understand the molecular basis of the role of XPD in human disease.
真核生物转录因子IIH(TFIIH)复合物参与核苷酸切除修复和转录起始过程。我们分析了TFIIH的Rad3/XPD解旋酶的三个酵母突变体,这些突变体被称为rem(重组和突变表型)。我们发现,在这些突变体中,不完全的核苷酸切除修复(NER)反应会导致复制叉断裂,随后同源重组机制参与进来以修复它们。然而,不同突变体的外显率有所不同,从而产生了一种表型梯度。有趣的是,所分析的突变位于Rad3的ATP结合槽处,体内实验表明,突变的Rad3蛋白受损后对DNA的亲和力会增加。由于人类着色性干皮病-科凯恩综合征(XP-CS)中存在XPD的ATP结合槽突变,我们在人类细胞中重建了rem突变,发现这些突变类似于XP-CS。我们提出,解旋酶活性的丧失与DNA亲和力的增加之间的平衡控制着TFIIH在NER过程中打开DNA的能力,以及它在DNA损伤部位和启动子处的持续存在。这决定了NER效率和损伤后转录的恢复,在人类细胞中这可以解释XP-CS表型,为理解XPD在人类疾病中的作用的分子基础开辟了新的视角。