Ning F L, Glavatskiy K, Ji Z, Kjelstrup S, H Vlugt T J
Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China.
Phys Chem Chem Phys. 2015 Jan 28;17(4):2869-83. doi: 10.1039/c4cp04212c. Epub 2014 Dec 15.
Understanding the thermal and mechanical properties of CH4 and CO2 hydrates is essential for the replacement of CH4 with CO2 in natural hydrate deposits as well as for CO2 sequestration and storage. In this work, we present isothermal compressibility, isobaric thermal expansion coefficient and specific heat capacity of fully occupied single-crystal sI-CH4 hydrates, CO2 hydrates and hydrates of their mixture using molecular dynamics simulations. Eight rigid/nonpolarisable water interaction models and three CH4 and CO2 interaction potentials were selected to examine the atomic interactions in the sI hydrate structure. The TIP4P/2005 water model combined with the DACNIS united-atom CH4 potential and TraPPE CO2 rigid potential were found to be suitable molecular interaction models. Using these molecular models, the results indicate that both the lattice parameters and the compressibility of the sI hydrates agree with those from experimental measurements. The calculated bulk modulus for any mixture ratio of CH4 and CO2 hydrates varies between 8.5 GPa and 10.4 GPa at 271.15 K between 10 and 100 MPa. The calculated thermal expansion and specific heat capacities of CH4 hydrates are also comparable with experimental values above approximately 260 K. The compressibility and expansion coefficient of guest gas mixture hydrates increase with an increasing ratio of CO2-to-CH4, while the bulk modulus and specific heat capacity exhibit the opposite trend. The presented results for the specific heat capacities of 2220-2699.0 J kg(-1) K(-1) for any mixture ratio of CH4 and CO2 hydrates are the first reported so far. These computational results provide a useful database for practical natural gas recovery from CH4 hydrates in deep oceans where CO2 is considered to replace CH4, as well as for phase equilibrium and mechanical stability of gas hydrate-bearing sediments. The computational schemes also provide an appropriate balance between computational accuracy and cost for predicting mechanical and thermal properties of gas hydrates in the high temperature range (≥260 K), and the schemes may be useful for the study of other complex hydrate systems.
了解CH4和CO2水合物的热学和力学性质对于在天然水合物矿床中用CO2替代CH4以及CO2的封存和储存至关重要。在这项工作中,我们使用分子动力学模拟给出了完全占据的单晶sI-CH4水合物、CO2水合物及其混合物水合物的等温压缩率、等压热膨胀系数和比热容。选择了八种刚性/不可极化水相互作用模型以及三种CH4和CO2相互作用势来研究sI水合物结构中的原子相互作用。发现TIP4P/2005水模型与DACNIS联合原子CH4势和TraPPE CO2刚性势相结合是合适的分子相互作用模型。使用这些分子模型,结果表明sI水合物的晶格参数和压缩率均与实验测量值相符。在271.15 K、10至100 MPa之间,CH4和CO2水合物任何混合比下计算得到的体积模量在8.5 GPa至10.4 GPa之间变化。计算得到的CH4水合物的热膨胀和比热容在约260 K以上也与实验值相当。客体气体混合物水合物的压缩率和膨胀系数随CO2与CH4比例的增加而增加,而体积模量和比热容则呈现相反趋势。对于CH4和CO2水合物任何混合比,所给出的比热容结果为2220 - 2699.0 J kg(-1) K(-1),这是迄今为止首次报道。这些计算结果为在深海中从CH4水合物实际开采天然气(其中考虑用CO2替代CH4)以及含气水合物沉积物的相平衡和力学稳定性提供了有用的数据库。这些计算方案在预测高温范围(≥260 K)内气体水合物的力学和热学性质时,在计算精度和成本之间也提供了适当平衡,并且该方案可能对研究其他复杂水合物系统有用。