Suppr超能文献

成功靶向卵巢癌肿瘤血管的新方法。

New ways to successfully target tumor vasculature in ovarian cancer.

作者信息

Yang Xiaoyun, Shen Fangrong, Hu Wei, Coleman Robert L, Sood Anil K

机构信息

aDepartment of Gynecologic Oncology and Reproductive Medicine bDepartment of Cancer Biology cCenter for RNA Interference and Non-Coding RNAs dDepartment of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA *Xiaoyun Yang and Fangrong Shen contributed equally to the writing of the article.

出版信息

Curr Opin Obstet Gynecol. 2015 Feb;27(1):58-65. doi: 10.1097/GCO.0000000000000136.

Abstract

PURPOSE OF REVIEW

The aim of this article was to review the recent literature on potential therapeutic strategies for overcoming resistance to antivascular endothelial growth factor drugs in ovarian cancer.

RECENT FINDINGS

Although clinical benefits of antivascular endothelial growth factor therapy were observed in ovarian cancer treatment trials, this use yielded only modest improvement in progression-free survival and, with the exception of cediranib, no effect on overall survival. Adaptive resistance and escape from antiangiogenesis therapy is likely a multifactorial process, including induction of hypoxia, vascular modulators, and immune response. New drugs targeting the tumor vasculature or other components of the surrounding microenvironment have shown promising results.

SUMMARY

When to start and end antiangiogenesis therapy and the choice of optimal treatment combinations remain controversial. Further evaluation of personalized novel angiogenesis-based therapy is warranted. Defining the critical interaction of these agents and pathways and the appropriate predictive markers will become an increasingly important objective for effective treatment.

摘要

综述目的

本文旨在综述近期有关克服卵巢癌抗血管内皮生长因子药物耐药性的潜在治疗策略的文献。

最新发现

尽管在卵巢癌治疗试验中观察到抗血管内皮生长因子治疗具有临床益处,但这种治疗仅使无进展生存期有适度改善,且除西地尼布外,对总生存期无影响。适应性耐药和从抗血管生成治疗中逃逸可能是一个多因素过程,包括缺氧诱导、血管调节剂和免疫反应。靶向肿瘤血管或周围微环境其他成分的新药已显示出有前景的结果。

总结

抗血管生成治疗何时开始和结束以及最佳治疗组合的选择仍存在争议。有必要进一步评估基于个性化的新型血管生成治疗。确定这些药物和途径的关键相互作用以及合适的预测标志物将成为有效治疗日益重要的目标。

相似文献

1
New ways to successfully target tumor vasculature in ovarian cancer.
Curr Opin Obstet Gynecol. 2015 Feb;27(1):58-65. doi: 10.1097/GCO.0000000000000136.
2
Angiogenesis as a target for the treatment of ovarian cancer.
Curr Opin Oncol. 2013 Sep;25(5):558-65. doi: 10.1097/CCO.0b013e328363e0da.
3
Angiogenesis as a strategic target for ovarian cancer therapy.
Nat Clin Pract Oncol. 2008 Apr;5(4):194-204. doi: 10.1038/ncponc1051. Epub 2008 Feb 12.
4
The role of bevacizumab in recurrent, platinum-sensitive ovarian cancer.
Expert Rev Anticancer Ther. 2014 Oct;14(10):1105-13. doi: 10.1586/14737140.2014.956095. Epub 2014 Sep 4.
5
Vascular-endothelial-growth-factor (VEGF) targeting therapies for endocrine refractory or resistant metastatic breast cancer.
Cochrane Database Syst Rev. 2012 Jul 11;2012(7):CD008941. doi: 10.1002/14651858.CD008941.pub2.
7
Targeting angiogenesis driven by vascular endothelial growth factors using antibody-based therapies.
Cancer J. 2008 May-Jun;14(3):170-7. doi: 10.1097/PPO.0b013e318178d9de.
8
Antiangiogenic drugs in ovarian cancer.
Br J Cancer. 2009 Jan 13;100(1):1-7. doi: 10.1038/sj.bjc.6604767. Epub 2008 Nov 11.
9
Efficacy of trebananib (AMG 386) in treating epithelial ovarian cancer.
Expert Opin Pharmacother. 2016;17(6):853-60. doi: 10.1517/14656566.2016.1161027. Epub 2016 Mar 21.

引用本文的文献

1
Development and Perspectives: Multifunctional Nucleic Acid Nanomedicines for Treatment of Gynecological Cancers.
Small. 2024 Oct;20(41):e2301776. doi: 10.1002/smll.202301776. Epub 2023 Jul 30.
2
Notch signaling in female cancers: a multifaceted node to overcome drug resistance.
Cancer Drug Resist. 2021 Aug 5;4(4):805-836. doi: 10.20517/cdr.2021.53. eCollection 2021.
3
Proteomics advances for precision therapy in ovarian cancer.
Expert Rev Proteomics. 2019 Oct;16(10):841-850. doi: 10.1080/14789450.2019.1666004. Epub 2019 Sep 13.
5
Virus, Vessel, Victory: A Novel Approach to Tumor Killing.
Clin Cancer Res. 2019 Mar 1;25(5):1446-1448. doi: 10.1158/1078-0432.CCR-18-3441. Epub 2018 Dec 10.
6
Ovarian cancer.
Nat Rev Dis Primers. 2016 Aug 25;2:16061. doi: 10.1038/nrdp.2016.61.
7
Downregulation of correlates with tumor progression and poor prognosis in ovarian carcinoma.
Oncol Lett. 2016 May;11(5):3123-3130. doi: 10.3892/ol.2016.4345. Epub 2016 Mar 17.

本文引用的文献

2
The regulation of angiogenesis by tissue cell-macrophage interactions.
Front Physiol. 2014 Jul 9;5:262. doi: 10.3389/fphys.2014.00262. eCollection 2014.
3
ISO-66, a novel inhibitor of macrophage migration, shows efficacy in melanoma and colon cancer models.
Int J Oncol. 2014 Oct;45(4):1457-68. doi: 10.3892/ijo.2014.2551. Epub 2014 Jul 22.
4
Tumor-associated macrophages: from mechanisms to therapy.
Immunity. 2014 Jul 17;41(1):49-61. doi: 10.1016/j.immuni.2014.06.010.
5
Ovarian cancer: TRINOVA-1, beyond VEGF inhibition.
Nat Rev Clin Oncol. 2014 Aug;11(8):442. doi: 10.1038/nrclinonc.2014.118. Epub 2014 Jul 8.
7
8
MiR-718 represses VEGF and inhibits ovarian cancer cell progression.
FEBS Lett. 2014 Jun 5;588(12):2078-86. doi: 10.1016/j.febslet.2014.04.040. Epub 2014 May 8.
9
Notch3 pathway alterations in ovarian cancer.
Cancer Res. 2014 Jun 15;74(12):3282-93. doi: 10.1158/0008-5472.CAN-13-2066. Epub 2014 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验