Department of Chemistry and Institute of Functional Materials, Pusan National University, San 30, Jangjeon-dong, Busan 609-735, Korea.
Department of Chemistry, Sejong University, Seoul 143-747, Korea.
Nat Commun. 2014 Dec 15;5:5773. doi: 10.1038/ncomms6773.
Cold denaturation is a fundamental phenomenon in aqueous solutions where the native structure of proteins disrupts on cooling. Understanding this process in molecular details can provide a new insight into the detailed natures of hydrophobic forces governing the stability of proteins in water. We show that the cold-denaturation-like phenomenon can be directly observed at low temperatures using a fully atomistic molecular dynamics simulation method. Using a highly optimized protein force field in conjunction with three different explicit water models, a replica exchange molecular dynamics simulation scheme at constant pressures allows for the computation of the melting profile of an experimentally well-characterized β-hairpin peptide. For all three water models tested, the simulated melting profiles are indicative of possible cold denaturation. From the analysis of simulation ensembles, we find that the most probable cold-denatured structure is structurally compact, with its hydrogen bonds and native hydrophobic packing substantially disrupted.
低温变性是水溶液中的一种基本现象,在冷却过程中蛋白质的天然结构会被破坏。从分子细节上理解这个过程,可以深入了解控制蛋白质在水中稳定性的疏水相互作用力的详细性质。我们表明,使用全原子分子动力学模拟方法,可以在低温下直接观察到类似于低温变性的现象。通过使用高度优化的蛋白质力场和三种不同的显式水分子模型,结合恒压复制交换分子动力学模拟方案,可以计算实验上特征良好的β-发夹肽的熔融曲线。对于所有测试的三种水分子模型,模拟的熔融曲线都表明可能存在低温变性。通过对模拟集合的分析,我们发现最可能的低温变性结构在结构上是紧凑的,其氢键和天然疏水堆积被严重破坏。