Bhatia Sangeeta, Egri-Nagy Attila, Francis Andrew R
Centre for Research in Mathematics, University of Western Sydney, Penrith, NSW, 2751, Australia.
J Math Biol. 2015 Nov;71(5):1149-78. doi: 10.1007/s00285-014-0852-1. Epub 2014 Dec 11.
Establishing a distance between genomes is a significant problem in computational genomics, because its solution can be used to establish evolutionary relationships including phylogeny. The "double cut and join" (DCJ) model of chromosomal rearrangement proposed by Yancopoulos et al. (Bioinformatics 21:3340-3346, 2005) has received attention as it can model inversions, translocations, fusion and fission on a multichromosomal genome that may contain both linear and circular chromosomes. In this paper, we realize the DCJ operator as a group action on the space of multichromosomal genomes. We study this group action, deriving some properties of the group and finding group-theoretic analogues for the key results in the DCJ theory.
在计算基因组学中,确定基因组之间的距离是一个重要问题,因为其解决方案可用于建立包括系统发育在内的进化关系。Yancopoulos等人(《生物信息学》21:3340 - 3346,2005年)提出的染色体重排“双切割与连接”(DCJ)模型受到了关注,因为它可以对可能包含线性和环状染色体的多染色体基因组上的倒位、易位、融合和裂变进行建模。在本文中,我们将DCJ算子实现为对多染色体基因组空间的群作用。我们研究这种群作用,推导该群的一些性质,并找到DCJ理论中关键结果的群论类似物。