Suppr超能文献

使用Gram-Schmidt子空间方法对人乳腺癌组织进行关键天然荧光团分析。

Key native fluorophores analysis of human breast cancer tissues using Gram-Schmidt subspace method.

作者信息

Pu Yang, Sordillo Laura A, Yang Yuanlong, Alfano R R

出版信息

Opt Lett. 2014 Dec 15;39(24):6787-90. doi: 10.1364/OL.39.006787.

Abstract

The native fluorescence (NFL) spectra of human cancerous and normal breast tissues were excited by a selected wavelength of 300 nm to investigate the efficacy of two key fluorophores: tryptophan and reduced nicotinamide adenine dinucleotide (NADH), as cancer biomarkers. The basis spectra of these key fluorophores' subspaces spanned by the corresponding emission spectra are obtained by the Gram-Schmidt method. A support vector machine (SVM) classifier is trained in the subspace to evaluate the sensitivity, specificity, and accuracy. This research demonstrates that the NFL spectroscopy measurements are effective to detect changes of fluorophores compositions in tissues due to the development of cancer.

摘要

通过选择300nm的波长激发人癌性和正常乳腺组织的固有荧光(NFL)光谱,以研究两种关键荧光团——色氨酸和还原型烟酰胺腺嘌呤二核苷酸(NADH)作为癌症生物标志物的功效。通过Gram-Schmidt方法获得由相应发射光谱所跨越的这些关键荧光团子空间的基础光谱。在该子空间中训练支持向量机(SVM)分类器,以评估其敏感性、特异性和准确性。本研究表明,NFL光谱测量对于检测由于癌症发展导致的组织中荧光团组成变化是有效的。

相似文献

3
Biomarkers spectral subspace for cancer detection.
J Biomed Opt. 2012 Oct;17(10):107005. doi: 10.1117/1.JBO.17.10.107005.
8
Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues.
Ann Surg Oncol. 2004 Jan;11(1):65-70. doi: 10.1007/BF02524348.
9
Support Vector Machine on fluorescence landscapes for breast cancer diagnostics.
J Fluoresc. 2012 Sep;22(5):1281-9. doi: 10.1007/s10895-012-1070-0. Epub 2012 Jun 8.

引用本文的文献

1
Machine Learning Empowered a Graphical User Interface on Native Fluorescence to Predict Breast Cancer.
ACS Omega. 2025 May 14;10(20):20315-20325. doi: 10.1021/acsomega.4c11669. eCollection 2025 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验