Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA Beijing Sport University, Beijing 100084, China.
Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
Exp Biol Med (Maywood). 2015 Jul;240(7):961-8. doi: 10.1177/1535370214562339. Epub 2014 Dec 11.
The effect of moderately extended, intermittent-hypoxia (IH) on cerebral perfusion during changes in CO2 was unknown. Thus, we assessed the changes in cerebral vascular conductance (CVC) and cerebral tissue oxygenation (ScO2) during experimental hypocapnia and hypercapnia following 14-day normobaric exposures to IH (10% O2). CVC was estimated from the ratio of mean middle cerebral arterial blood flow velocity (transcranial Doppler sonography) to mean arterial pressure (tonometry), and ScO2 in the prefrontal cortex was monitored by near-infrared spectroscopy. Changes in CVC and ScO2 during changes in partial pressure of end-tidal CO2 (PETCO2, mass spectrometry) induced by 30-s paced-hyperventilation (hypocapnia) and during 6-min CO2 rebreathing (hypercapnia) were compared before and after 14-day IH exposures in eight young nonsmokers. Repetitive IH exposures reduced the ratio of %ΔCVC/ΔPETCO2 during hypocapnia (1.00 ± 0.13 vs 1.94 ± 0.35 vs %/mmHg, P = 0.026) and the slope of ΔCVC/ΔPETCO2 during hypercapnia (1.79 ± 0.37 vs 2.97 ± 0.64 %/mmHg, P = 0.021), but had no significant effect on ΔScO2/ΔPETCO2. The ventilatory response to hypercapnia during CO2 rebreathing was significantly diminished following 14-day IH exposures (0.83 ± 0.07 vs 1.14 ± 0.09 L/min/mmHg, P = 0.009). We conclude that repetitive normobaric IH exposures significantly diminish variations of cerebral perfusion in response to hypercapnia and hypocapnia without compromising cerebral tissue oxygenation. This IH-induced blunting of cerebral vasoreactivity during CO2 variations helps buffer excessive oscillations of cerebral underperfusion and overperfusion while sustaining cerebral O2 homeostasis.
在二氧化碳变化期间,适度延长的间歇性低氧(IH)对脑灌注的影响尚不清楚。因此,我们评估了在 14 天常压 IH(10%O2)暴露后,实验性低碳酸血症和高碳酸血症期间脑血管导率(CVC)和脑组织氧合(ScO2)的变化。CVC 是通过经颅多普勒超声测量的平均大脑中动脉血流速度(transcranial Doppler sonography)与平均动脉压(tonometry)的比值来估计的,通过近红外光谱监测前额皮质的 ScO2。在八位年轻不吸烟者中,比较了 14 天 IH 暴露前后,通过 30 秒有节奏的过度通气(低碳酸血症)诱导的呼气末二氧化碳分压(PETCO2,质谱)变化和 6 分钟 CO2 再呼吸(高碳酸血症)期间 CVC 和 ScO2 的变化。重复 IH 暴露降低了低碳酸血症期间 %ΔCVC/ΔPETCO2 的比值(1.00 ± 0.13 对 1.94 ± 0.35 对 %/mmHg,P = 0.026)和高碳酸血症期间 ΔCVC/ΔPETCO2 的斜率(1.79 ± 0.37 对 2.97 ± 0.64 %/mmHg,P = 0.021),但对 ΔScO2/ΔPETCO2 没有显著影响。CO2 再呼吸期间的高碳酸血症通气反应在 14 天 IH 暴露后明显降低(0.83 ± 0.07 对 1.14 ± 0.09 L/min/mmHg,P = 0.009)。我们得出结论,重复的常压 IH 暴露显著降低了脑灌注对高碳酸血症和低碳酸血症的变化反应,而不损害脑组织氧合。这种在 CO2 变化期间 IH 诱导的脑血管反应性迟钝有助于缓冲脑灌注不足和过度灌注的过度波动,同时维持脑 O2 稳态。